File size: 6,102 Bytes
8d46650
7140b0b
 
 
1556da5
7140b0b
 
 
 
 
 
 
 
 
1556da5
7140b0b
 
 
 
 
 
 
1556da5
7140b0b
1556da5
8d46650
 
7140b0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
base_model: facebook/mms-1b-all
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-nhi-adapterft-orig-ortho_fold1
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: test
      args: default
    metrics:
    - type: wer
      value: 0.4133971291866029
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-mms-1b-nhi-adapterft-orig-ortho_fold1

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6127
- Wer: 0.4134
- Cer: 0.1235

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 20
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 1.0469        | 1.6529  | 200   | 0.7880          | 0.6456 | 0.2068 |
| 0.8396        | 3.3058  | 400   | 0.6866          | 0.6118 | 0.1870 |
| 0.7648        | 4.9587  | 600   | 0.6500          | 0.5656 | 0.1752 |
| 0.71          | 6.6116  | 800   | 0.6277          | 0.5477 | 0.1686 |
| 0.6709        | 8.2645  | 1000  | 0.6158          | 0.5349 | 0.1585 |
| 0.6492        | 9.9174  | 1200  | 0.5821          | 0.5033 | 0.1501 |
| 0.6284        | 11.5702 | 1400  | 0.5741          | 0.5145 | 0.1573 |
| 0.6054        | 13.2231 | 1600  | 0.5814          | 0.4912 | 0.1494 |
| 0.5808        | 14.8760 | 1800  | 0.5456          | 0.4896 | 0.1444 |
| 0.5585        | 16.5289 | 2000  | 0.5647          | 0.4884 | 0.1465 |
| 0.5546        | 18.1818 | 2200  | 0.5639          | 0.4890 | 0.1475 |
| 0.5288        | 19.8347 | 2400  | 0.5573          | 0.4903 | 0.1475 |
| 0.5307        | 21.4876 | 2600  | 0.5480          | 0.4657 | 0.1397 |
| 0.5172        | 23.1405 | 2800  | 0.5427          | 0.4622 | 0.1386 |
| 0.5041        | 24.7934 | 3000  | 0.5377          | 0.4549 | 0.1344 |
| 0.4748        | 26.4463 | 3200  | 0.5483          | 0.4635 | 0.1370 |
| 0.4754        | 28.0992 | 3400  | 0.5447          | 0.4699 | 0.1429 |
| 0.4602        | 29.7521 | 3600  | 0.5495          | 0.4523 | 0.1353 |
| 0.4502        | 31.4050 | 3800  | 0.5457          | 0.4329 | 0.1286 |
| 0.4413        | 33.0579 | 4000  | 0.5515          | 0.4501 | 0.1325 |
| 0.4391        | 34.7107 | 4200  | 0.5263          | 0.4545 | 0.1320 |
| 0.4097        | 36.3636 | 4400  | 0.5485          | 0.4574 | 0.1365 |
| 0.4208        | 38.0165 | 4600  | 0.5394          | 0.4542 | 0.1336 |
| 0.4086        | 39.6694 | 4800  | 0.5392          | 0.4357 | 0.1294 |
| 0.3956        | 41.3223 | 5000  | 0.5579          | 0.4332 | 0.1304 |
| 0.4036        | 42.9752 | 5200  | 0.5475          | 0.4376 | 0.1307 |
| 0.3984        | 44.6281 | 5400  | 0.5492          | 0.4297 | 0.1295 |
| 0.3769        | 46.2810 | 5600  | 0.5503          | 0.4348 | 0.1289 |
| 0.3699        | 47.9339 | 5800  | 0.5330          | 0.4357 | 0.1284 |
| 0.3611        | 49.5868 | 6000  | 0.5682          | 0.4380 | 0.1308 |
| 0.3619        | 51.2397 | 6200  | 0.5661          | 0.4316 | 0.1276 |
| 0.3387        | 52.8926 | 6400  | 0.5512          | 0.4287 | 0.1282 |
| 0.3392        | 54.5455 | 6600  | 0.5834          | 0.4351 | 0.1291 |
| 0.3365        | 56.1983 | 6800  | 0.5710          | 0.4335 | 0.1276 |
| 0.3288        | 57.8512 | 7000  | 0.5631          | 0.4262 | 0.1287 |
| 0.3244        | 59.5041 | 7200  | 0.5605          | 0.4281 | 0.1272 |
| 0.3187        | 61.1570 | 7400  | 0.5695          | 0.4332 | 0.1275 |
| 0.3258        | 62.8099 | 7600  | 0.5684          | 0.4265 | 0.1268 |
| 0.3035        | 64.4628 | 7800  | 0.5924          | 0.4185 | 0.1254 |
| 0.3051        | 66.1157 | 8000  | 0.5732          | 0.4319 | 0.1279 |
| 0.2968        | 67.7686 | 8200  | 0.5773          | 0.4204 | 0.1249 |
| 0.2982        | 69.4215 | 8400  | 0.5819          | 0.4140 | 0.1243 |
| 0.297         | 71.0744 | 8600  | 0.5941          | 0.4159 | 0.1240 |
| 0.2922        | 72.7273 | 8800  | 0.5836          | 0.4201 | 0.1229 |
| 0.2798        | 74.3802 | 9000  | 0.5951          | 0.4201 | 0.1243 |
| 0.2692        | 76.0331 | 9200  | 0.5820          | 0.4220 | 0.1255 |
| 0.2704        | 77.6860 | 9400  | 0.5954          | 0.4230 | 0.1251 |
| 0.271         | 79.3388 | 9600  | 0.6022          | 0.4172 | 0.1254 |
| 0.2633        | 80.9917 | 9800  | 0.5975          | 0.4182 | 0.1248 |
| 0.2554        | 82.6446 | 10000 | 0.6114          | 0.4124 | 0.1242 |
| 0.2575        | 84.2975 | 10200 | 0.6084          | 0.4153 | 0.1235 |
| 0.2554        | 85.9504 | 10400 | 0.6007          | 0.4156 | 0.1243 |
| 0.2595        | 87.6033 | 10600 | 0.6010          | 0.4166 | 0.1240 |
| 0.2544        | 89.2562 | 10800 | 0.6080          | 0.4217 | 0.1251 |
| 0.2555        | 90.9091 | 11000 | 0.6076          | 0.4156 | 0.1246 |
| 0.247         | 92.5620 | 11200 | 0.6151          | 0.4150 | 0.1239 |
| 0.2465        | 94.2149 | 11400 | 0.6113          | 0.4121 | 0.1240 |
| 0.2376        | 95.8678 | 11600 | 0.6136          | 0.4153 | 0.1237 |
| 0.2464        | 97.5207 | 11800 | 0.6121          | 0.4137 | 0.1235 |
| 0.2433        | 99.1736 | 12000 | 0.6127          | 0.4134 | 0.1235 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.4.0
- Datasets 2.19.1
- Tokenizers 0.19.1