--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.7866666666666666 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6895 - Accuracy: 0.7867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0249 | 1.0 | 88 | 1.9523 | 0.4667 | | 1.3937 | 2.0 | 176 | 1.4094 | 0.62 | | 1.2571 | 3.0 | 264 | 1.2109 | 0.6567 | | 0.9939 | 4.0 | 352 | 0.9954 | 0.7067 | | 0.7253 | 5.0 | 440 | 0.8227 | 0.78 | | 0.6612 | 6.0 | 528 | 0.8231 | 0.76 | | 0.3185 | 7.0 | 616 | 0.7390 | 0.79 | | 0.2263 | 8.0 | 704 | 0.7152 | 0.78 | | 0.4796 | 9.0 | 792 | 0.6964 | 0.7833 | | 0.3332 | 10.0 | 880 | 0.6895 | 0.7867 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3