Liea commited on
Commit
bf7e68c
1 Parent(s): 1e80f2e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 216.38 +/- 60.14
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 263.88 +/- 19.85
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d0bb7c0b6d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d0bb7c0b760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d0bb7c0b7f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d0bb7c0b880>", "_build": "<function ActorCriticPolicy._build at 0x7d0bb7c0b910>", "forward": "<function ActorCriticPolicy.forward at 0x7d0bb7c0b9a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d0bb7c0ba30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d0bb7c0bac0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d0bb7c0bb50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d0bb7c0bbe0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d0bb7c0bc70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d0bb7c0bd00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d0bb7c0da00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690699278331946595, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOr4r3hgNC6Sou4O40uwzxgqMw6nDmnvQAAgD8AAIA/QKfhvSmYG7pmVzO6DZVXNi/7fzqyx1Q5AACAPwAAAACtGQK+N5BbP2Khuz3r6Ki+TH+6PFN10D0AAAAAAAAAAJopJjz33bU/UnbjPW7Ya732Q308OVYKPQAAAAAAAAAATSo7veFYmLpvV4K4yRN6s1QdfLoJrJY3AACAPwAAgD+Atd89NCC8PgKmr73Ch5i+g+4uvdDQ6TwAAAAAAAAAAJqoS73hXIK6ktvVvJtS0rqNhcS5KrUCuwAAgD8AAIA/TVJ5vQVtDz7ZkQm6eWBRvi4FET03ODi9AAAAAAAAAAAzcnw+A9hbPz7UFz6xGPq+lSVVPkBwM70AAAAAAAAAAA22rb1qpkI+z3mOvT9JB753mnU7EKgKvAAAAAAAAAAAzd6rvCk4b7qHbKQ6dZqXNYfYUrrG0MC5AACAPwAAgD9mcpM+ZJcKPkeSPb3sLkW+RXsYPVPDOT4AAAAAAAAAAGCNBL7VMq4/sjPWvquJsr4vJ1q+O1RIvgAAAAAAAAAAgGFIPmU6wj4ejoS+2b6rvpTk4rxG3By+AAAAAAAAAAAzSO48P2s7P8hTYL0pa7u+ybaHPegJmb0AAAAAAAAAAKBHtT5yTus+XngOPFLDzr6etZQ+UtFIvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGj4a7mMfiiMAWyUTegDjAF0lEdAmSY7Z8KG+XV9lChoBkdAcBcp6QeV9mgHTXICaAhHQJkmqOKfnOl1fZQoaAZHQHMYcvduYQdoB00JA2gIR0CZJrHy3CsPdX2UKGgGR0BxMuR6nivQaAdNWgNoCEdAmSdTh99c8nV9lChoBkdAYk563y7PIGgHTegDaAhHQJknx1X/5tZ1fZQoaAZHQEt9rleWv8toB0vkaAhHQJkqaEVWS2Z1fZQoaAZHQG3A513dKuloB01bA2gIR0CZLDyeqaPTdX2UKGgGR0BjechX8wYcaAdN6ANoCEdAmS0fFefI0nV9lChoBkdAZ1+jY7JXAGgHTegDaAhHQJktc9Net0V1fZQoaAZHQHH/sa4tpVVoB02KAWgIR0CZMW6DoQnQdX2UKGgGR0BfC//7zkIYaAdN6ANoCEdAmTGaV+qioXV9lChoBkdAciaX5FgDzWgHTW4BaAhHQJlCyzTnaFp1fZQoaAZHQHAsCZnctXhoB01FAWgIR0CZQ1idat9ydX2UKGgGR0BxWtBzFMqSaAdNIgFoCEdAmUOUYbbUPXV9lChoBkdAbY57CzkZJmgHTVIBaAhHQJlETI4lyBF1fZQoaAZHQHJuv2saKk5oB01fAmgIR0CZRWmO2iL3dX2UKGgGR0BwwgDMeOn3aAdNGgFoCEdAmUZHm7rcCnV9lChoBkdARNbq0MPSUmgHS8hoCEdAmUo642CNCXV9lChoBkdAcEsfnwG4Z2gHTfMBaAhHQJlKwP9UCJZ1fZQoaAZHQG/q3FDOTq1oB01bAWgIR0CZSxG+9Jz1dX2UKGgGR0BwMV+fAbhnaAdNhANoCEdAmUxW38XN1XV9lChoBkdAb1+cc2itaWgHTXIBaAhHQJlM1p8F6iV1fZQoaAZHQHBnJpBX0XhoB02ZAWgIR0CZT2E+gUUPdX2UKGgGR0Bu95yCFsYVaAdNbgFoCEdAmVK/mknCwnV9lChoBkdAb0Ve2NNrTGgHTXIBaAhHQJlUZRdhRZV1fZQoaAZHQHHZdMCcPOJoB01xAWgIR0CZVbx4ptrLdX2UKGgGR0BiWvitJWeZaAdN6ANoCEdAmVaDkuHvdHV9lChoBkdAcoAmplz2e2gHTZEBaAhHQJlWljpcHGF1fZQoaAZHQHES1b/wRXhoB02yAWgIR0CZV3OOKfnPdX2UKGgGR0BxXQIE8q4IaAdNJQFoCEdAmVuGqHXVb3V9lChoBkdAcnCumJm/WWgHTdQBaAhHQJlbr2rXDm91fZQoaAZHQHKyyxRl6JJoB02/AWgIR0CZW8PxQSBcdX2UKGgGR0BwqDacqe9SaAdNZgFoCEdAmVwXeaa1C3V9lChoBkdAcic7bcoH9mgHTa4BaAhHQJlfosXizcB1fZQoaAZHQGXP8/dIoVpoB03oA2gIR0CZYKLf1pTNdX2UKGgGR0BvmLl90A93aAdNNQFoCEdAmWIgwj+rEXV9lChoBkdAQabPD50r9WgHS61oCEdAmWKa4MF2V3V9lChoBkdAcbvyAhB7eGgHTTIBaAhHQJli/ho/Rmd1fZQoaAZHQGFj5+hGpddoB03oA2gIR0CZYyhC+lCUdX2UKGgGR0Bxyga2nbZfaAdN0gFoCEdAmWMz9fkWAXV9lChoBkdAcWesWfseGWgHTaoBaAhHQJljfWxyGSJ1fZQoaAZHQHBZ1ijL0SRoB00vAWgIR0CZY+t3OfNBdX2UKGgGR0BxVvT7VJ+VaAdNFAFoCEdAmWZt7a7EpHV9lChoBkdAckFO2AoXsWgHTZkBaAhHQJlnGtLcsUZ1fZQoaAZHQHKXfqPfbbloB00IAWgIR0CZactMPBi1dX2UKGgGR0BBlb+Lm6oVaAdL82gIR0CZa2ZkCmuUdX2UKGgGR0BJXhIFvAGjaAdL0GgIR0CZa+E9t/FzdX2UKGgGR0Bx2hkmQbMpaAdNMwFoCEdAmX/t2HLzPXV9lChoBkdAcAw3FUADJWgHTfIBaAhHQJmAkNb1RLt1fZQoaAZHQHGYmPPszEdoB01SA2gIR0CZgVej2zv7dX2UKGgGR0Bw5BfmcOLBaAdNUgFoCEdAmYGGFN+LFXV9lChoBkdAbbqvvjOs1mgHTVoBaAhHQJmCSONo8IR1fZQoaAZHQHEfvnnuAqdoB01pAWgIR0CZglx2B8QadX2UKGgGR0BwISSvC/GmaAdNWAFoCEdAmYKWO+7DmHV9lChoBkdAclLGr0aqCGgHTYwCaAhHQJmCrrIHTql1fZQoaAZHQHFVp3LV4HJoB00OAmgIR0CZgqnqVyFPdX2UKGgGR0BspuMS9M9KaAdN0gJoCEdAmYL7tu1nd3V9lChoBkdAcu6nsLORkmgHTS4BaAhHQJmEKfywwCd1fZQoaAZHQHCQKg/TsppoB03lAWgIR0CZhVpHZsbedX2UKGgGR0Bx15PLxI8RaAdNSAFoCEdAmYXebZvkzXV9lChoBkdAVB+LsKLKm2gHS6xoCEdAmYhkHUtqYnV9lChoBkdAcIIq4YrJ82gHTXMBaAhHQJmK3vTgEU11fZQoaAZHQHB3ws052hZoB01GAWgIR0CZiwlk6LfldX2UKGgGR0BxUNqzqrzYaAdNYwFoCEdAmYubgsK9f3V9lChoBkdAcpAPGyX2NGgHTRgBaAhHQJmMYwEhaDB1fZQoaAZHQHC9dRFZxJdoB00jAWgIR0CZjdr8R+SbdX2UKGgGR0BwtqaDwpfAaAdNHwFoCEdAmY3vs7dSEXV9lChoBkdAb6yWQfZElWgHTSIBaAhHQJmOVmTTvy91fZQoaAZHQHE3GNzbN8poB01rAWgIR0CZjvY9gWrPdX2UKGgGR0ByXvleWv8qaAdL+WgIR0CZj6ZrpJPJdX2UKGgGR0Bv5PocJdB0aAdNFQFoCEdAmZAfkili0HV9lChoBkdAcb67uUliSmgHTWYBaAhHQJmQZQIldC51fZQoaAZHQG2nLx7RfF9oB01aAWgIR0CZkVX4TK1YdX2UKGgGR0ByWrXoTwlTaAdNkAFoCEdAmZF/YnOSn3V9lChoBkdAcGX8a4tpVWgHTR8BaAhHQJmSuv/zasZ1fZQoaAZHQG+TPDpC8e1oB00xAWgIR0CZlTByCFsYdX2UKGgGR0BwnJVWCEpRaAdNPQFoCEdAmZWC/wiJO3V9lChoBkdAb0UxPfsNUmgHTTsBaAhHQJmWMBltj1B1fZQoaAZHQG/Zd4eLehxoB003AWgIR0CZluRRdhRZdX2UKGgGR0BwzqKO1fE5aAdNWAJoCEdAmZfITGo73nV9lChoBkdAbmLQj2SMcmgHTUUBaAhHQJmYyEL6UJR1fZQoaAZHQG9dEq2BretoB00nAWgIR0CZmNu27Wd3dX2UKGgGR0Byrr3Dej20aAdNigJoCEdAmZpCKekHlnV9lChoBkdAcmvI9TxXn2gHTTEBaAhHQJmasCA+Y+l1fZQoaAZHQG/iQzLwF1VoB01+AWgIR0CZm03l0YCRdX2UKGgGR0BtQArFwT/RaAdNIAFoCEdAmZtn36AOKHV9lChoBkdAbdSpm29cr2gHTUYBaAhHQJmcg9wFTvR1fZQoaAZHQHG7dcfNiYtoB00iAWgIR0CZnOews5GSdX2UKGgGR0Byeau3c580aAdNvQFoCEdAmZ0Pms/6f3V9lChoBkdAbmOZnctXgmgHTbcBaAhHQJmehgogFHJ1fZQoaAZHQHDBqq0dBB1oB00OAWgIR0CZnuDsdDIBdX2UKGgGR0Bvwm+K0lZ6aAdNEAFoCEdAmZ+ZmqYJFHV9lChoBkdAcIeYbsF+u2gHTQ0BaAhHQJmhDM/yGzt1fZQoaAZHQHDOFoDgZTBoB00IAWgIR0CZof+VTrE+dX2UKGgGR0BsPwtpVS4waAdNGgJoCEdAmaJ8KTjebnV9lChoBkdAb6y4JeE7GWgHTRoBaAhHQJmik71ZkkN1fZQoaAZHQFLBM1CPZIxoB0vXaAhHQJmitfrrxAl1fZQoaAZHQHJXFRgqmTFoB01fAWgIR0CZoxHaN+9bdX2UKGgGR0BybeYVqN6xaAdNHAFoCEdAmaRwwsXiznV9lChoBkdAbhzSvTw2EWgHTTwBaAhHQJmlJHWjGkx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb611d3feb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb611d3ff40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb611d40040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb611d400d0>", "_build": "<function ActorCriticPolicy._build at 0x7eb611d40160>", "forward": "<function ActorCriticPolicy.forward at 0x7eb611d401f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb611d40280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb611d40310>", "_predict": "<function ActorCriticPolicy._predict at 0x7eb611d403a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb611d40430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb611d404c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb611d40550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7eb611d3a700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690760967195047687, "learning_rate": 0.00025, "tensorboard_log": "runs", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPhzjw0rLo/lZb5PkAcvT4tuAm8B0A1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE5yaEzwc6MAWyUTSkBjAF0lEdAqanjdi2Dx3V9lChoBkdAcLaQ4S6DoWgHTWYCaAhHQKmrrH0btJF1fZQoaAZHQHA85qqOtGNoB00vAWgIR0CprI2QwK0EdX2UKGgGR0BwmMdaMaS+aAdNDQFoCEdAqa1WLrHEM3V9lChoBkdAYZkcaOxSpGgHTegDaAhHQKmw55nlGPR1fZQoaAZHQHGpOTvAoG9oB00qAWgIR0Cpsb7+T/yYdX2UKGgGR0BJiKwY+B6KaAdNAwFoCEdAqbKB4QjD9HV9lChoBkdAYzejHGS6lWgHTegDaAhHQKm1dgn+hoN1fZQoaAZHQGzskug6EJ1oB00aAWgIR0Cptuw++ueSdX2UKGgGR0BwQg3++/QCaAdNEAFoCEdAqbe7amGdqnV9lChoBkdAcN7Wl/H5rWgHTRYBaAhHQKm4jJLdvbZ1fZQoaAZHQHBxctGus91oB00BAWgIR0CpuUvO6d1/dX2UKGgGR0BwAV94NZvDaAdNOAFoCEdAqbo0EcKgI3V9lChoBkdAYbf/rjYI0WgHTegDaAhHQKm9znV5KOF1fZQoaAZHQFPHkCmuTzNoB0v5aAhHQKm+wvcrRSh1fZQoaAZHQHDvaBZpztFoB00ZAWgIR0Cpv8M2FWXDdX2UKGgGR0Bw8Sr3j+72aAdNNwFoCEdAqcEB6+nIhnV9lChoBkdAZFd4xk/bCmgHTegDaAhHQKnEliOvMbF1fZQoaAZHQG7X/aHsTnJoB00VAWgIR0CpxV26kIomdX2UKGgGR0BxQKQ6p5u7aAdNAwFoCEdAqcYWFDfFaXV9lChoBkdAbiOEt/WlM2gHTUABaAhHQKnHBsYVIqd1fZQoaAZHQHE88B6rvLJoB00RAWgIR0Cpx8RFRYRvdX2UKGgGR0Bibc6o2n89aAdN6ANoCEdAqcs4SYgJTnV9lChoBkdAcRFme18b72gHTT4BaAhHQKnMHqzqrzZ1fZQoaAZHQHBrzjzZpSJoB00PAWgIR0CpzOJVS4vwdX2UKGgGR0BynTjuKGcnaAdNQAFoCEdAqc3PNu+AVnV9lChoBkdAb+8Tzundf2gHTVIBaAhHQKnOzaY/mkp1fZQoaAZHQHAn7mQr+YNoB00xAWgIR0Cpz6tQ0oBrdX2UKGgGR0Bwtkx59mYjaAdNBgFoCEdAqdBozFdcB3V9lChoBkdAbqcajvd/KGgHTQsBaAhHQKnR2qHXVb11fZQoaAZHQG/Bvu5SWJJoB01MAWgIR0Cp0tquKXOXdX2UKGgGR0BwgXFAE+xGaAdL+WgIR0Cp050mMOwxdX2UKGgGR0Bm+7T8YQ8PaAdN6ANoCEdAqdbtjLB9C3V9lChoBkdAby8dxyXD32gHTRoBaAhHQKnY+mReTmp1fZQoaAZHQHBe0I9kjHJoB00vAWgIR0Cp2ezEaVD8dX2UKGgGR0BzGa4e9zwMaAdNUwFoCEdAqdrf6Q/5cnV9lChoBkdAchmt9QXQ+mgHTTYBaAhHQKnbw2uxKQJ1fZQoaAZHQHCyLK/20zFoB00oAWgIR0Cp3JMglnh9dX2UKGgGR0BsyMtZmqYJaAdNNAFoCEdAqd168tf5UXV9lChoBkdAcZkzZYgaFWgHTUABaAhHQKneZR2r4nF1fZQoaAZHQHKyJ+QU5+9oB01HAWgIR0Cp3/oicG1QdX2UKGgGR0BwDJMAWBSUaAdNIwFoCEdAqeDZqVQhwHV9lChoBkdAbIPk8zQ/o2gHTSgBaAhHQKnhtTRYzSF1fZQoaAZHQHGcyAH3UQVoB01FAWgIR0Cp4qY95hScdX2UKGgGR0ByO/uhK15TaAdNQAFoCEdAqeOd7tzCDXV9lChoBkdAbZo+10DEFWgHTRoBaAhHQKnkZw0fozN1fZQoaAZHQHH7Brvb48FoB00vAWgIR0Cp5UWH1vl2dX2UKGgGR0BxzixUvPC3aAdNKgFoCEdAqebE3++/QHV9lChoBkdAcI+hbnoxH2gHTSYBaAhHQKnnoBEKE391fZQoaAZHQHCRX1J17ppoB00LAWgIR0Cp6GLIHTqjdX2UKGgGR0Bxc0uK4x1xaAdNLQFoCEdAqek9foicG3V9lChoBkdAcUUYTj/+9GgHTS8BaAhHQKnqGd4mkWR1fZQoaAZHQCWaCrcTJyRoB0vbaAhHQKnqt30wrUd1fZQoaAZHQHBPjWPLgXNoB00oAWgIR0Cp65d5prULdX2UKGgGR0BJLJxWDHwPaAdL6mgIR0Cp7OjUd7v5dX2UKGgGR0BFStnXd0q6aAdLxGgIR0Cp7ZQwj+rEdX2UKGgGR0Bx9rEit7rtaAdNUgFoCEdAqe7fT5O8CnV9lChoBkdAcQJRwZOzp2gHTT0BaAhHQKnwI1UlzEJ1fZQoaAZHQG5BlA/s3Q5oB01bAmgIR0Cp8iiVKPGRdX2UKGgGR0BvNA7V8Ti9aAdNDAFoCEdAqfLv9R77bnV9lChoBkdAcQKN34bjtGgHTScBaAhHQKn0aH1OCXh1fZQoaAZHQHK/ReXzDoBoB00vAWgIR0Cp9Uq6FuejdX2UKGgGR0BumJul41P4aAdNDgFoCEdAqfYUxoIv8XV9lChoBkdAQJ7FwT/Q0GgHS89oCEdAqfaq3kPtlnV9lChoBkdAcTdmXw9aEGgHTTQBaAhHQKn3jYHxBmh1fZQoaAZHQGUi9U0elsRoB03oA2gIR0Cp+xb3Gn4xdX2UKGgGR0BwQFAPd2xIaAdNIAFoCEdAqfvwa99MK3V9lChoBkdAYkN1AZ88cWgHTegDaAhHQKn+3pW3jMp1fZQoaAZHQG8fjMeOn2toB00LAWgIR0Cp/6MYMvytdX2UKGgGR0BwXk+bExZdaAdNDgFoCEdAqgBlhPTG53V9lChoBkdAb7uzk6tDD2gHTRoBaAhHQKoBz/Yrauh1fZQoaAZHQG8Pi6Ymb9ZoB01IAWgIR0CqAr6yrxRVdX2UKGgGR0A01T101ZTyaAdL1mgIR0CqA1eHSF4+dX2UKGgGR0A/hIoE0SAZaAdL82gIR0CqBA2CNCJGdX2UKGgGR0Bx16ESM98raAdNRAFoCEdAqgT4mkWRBHV9lChoBkdAcLsoS+QEIWgHTRABaAhHQKoGCicG1QZ1fZQoaAZHQGOXJAUtZmtoB03oA2gIR0CqCmzYukDZdX2UKGgGR0BxAjSpiqhlaAdNMQFoCEdAqgtUiD/VAnV9lChoBkdAcfJ961LJ0WgHTWIBaAhHQKoMYAQQL/l1fZQoaAZHQG3ayxZ+x4ZoB002AWgIR0CqDUdM9KVZdX2UKGgGR0BwzH9itq59aAdNLAFoCEdAqg4ojW07bXV9lChoBkdAcAL+717IDGgHTR0BaAhHQKoPplCkXUJ1fZQoaAZHQHA5i35N47loB00OAWgIR0CqEHiUX531dX2UKGgGR0BxQDtlZowmaAdNQQFoCEdAqhFn4yoGZHV9lChoBkdAcRLA3T/hl2gHTU0BaAhHQKoSXr9l2/11fZQoaAZHQHGGsw+MZP5oB005AWgIR0CqE0iKR+z/dX2UKGgGR0BwCAKKHfuUaAdNIgFoCEdAqhQqB7NSqHV9lChoBkdAcPwlCCz1LGgHTS8BaAhHQKoVDdDYywh1fZQoaAZHQHANE6tDD0loB00ZAWgIR0CqFolF2FFldX2UKGgGR0Bw2ik0rK/3aAdNXAFoCEdAqhePnSv1UXV9lChoBkdAcajUQTVUdmgHTQgBaAhHQKoYW5wwTM91fZQoaAZHQHAUWRvFWGRoB01OAWgIR0CqGVJhWo3rdX2UKGgGR0BjRlfzBhx6aAdN6ANoCEdAqhzZQtSQ5nV9lChoBkdAQmzupjtojGgHTQABaAhHQKod3bD/EO11fZQoaAZHQEh0zk6tDD1oB0veaAhHQKoewsGPgel1fZQoaAZHQG8uHFo+OfdoB00vAWgIR0CqIBWqkuYhdX2UKGgGR0Bxjaj1wo9caAdNJAFoCEdAqiEhC4SYgXV9lChoBkdAcb3k0Jng52gHTS4BaAhHQKoiBeNT9891fZQoaAZHQHC+kP6KtPpoB01WAWgIR0CqIwod2gWadX2UKGgGR0BxvmgsbvPUaAdNPwFoCEdAqiPtyvLX+XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0123, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c2cb3a226b4f3fea3114861992f9f04049d897fcd8207d4eb29cbe6f68379a7
3
- size 146745
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01e65c406a6f00f19c909a120c8ee265f87830f11d6f2c9131a373faa636dd0f
3
+ size 146093
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7d0bb7c0b6d0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d0bb7c0b760>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d0bb7c0b7f0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d0bb7c0b880>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7d0bb7c0b910>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7d0bb7c0b9a0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d0bb7c0ba30>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d0bb7c0bac0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7d0bb7c0bb50>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d0bb7c0bbe0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d0bb7c0bc70>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d0bb7c0bd00>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7d0bb7c0da00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1690699278331946595,
30
- "learning_rate": 0.0003,
31
- "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOr4r3hgNC6Sou4O40uwzxgqMw6nDmnvQAAgD8AAIA/QKfhvSmYG7pmVzO6DZVXNi/7fzqyx1Q5AACAPwAAAACtGQK+N5BbP2Khuz3r6Ki+TH+6PFN10D0AAAAAAAAAAJopJjz33bU/UnbjPW7Ya732Q308OVYKPQAAAAAAAAAATSo7veFYmLpvV4K4yRN6s1QdfLoJrJY3AACAPwAAgD+Atd89NCC8PgKmr73Ch5i+g+4uvdDQ6TwAAAAAAAAAAJqoS73hXIK6ktvVvJtS0rqNhcS5KrUCuwAAgD8AAIA/TVJ5vQVtDz7ZkQm6eWBRvi4FET03ODi9AAAAAAAAAAAzcnw+A9hbPz7UFz6xGPq+lSVVPkBwM70AAAAAAAAAAA22rb1qpkI+z3mOvT9JB753mnU7EKgKvAAAAAAAAAAAzd6rvCk4b7qHbKQ6dZqXNYfYUrrG0MC5AACAPwAAgD9mcpM+ZJcKPkeSPb3sLkW+RXsYPVPDOT4AAAAAAAAAAGCNBL7VMq4/sjPWvquJsr4vJ1q+O1RIvgAAAAAAAAAAgGFIPmU6wj4ejoS+2b6rvpTk4rxG3By+AAAAAAAAAAAzSO48P2s7P8hTYL0pa7u+ybaHPegJmb0AAAAAAAAAAKBHtT5yTus+XngOPFLDzr6etZQ+UtFIvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGj4a7mMfiiMAWyUTegDjAF0lEdAmSY7Z8KG+XV9lChoBkdAcBcp6QeV9mgHTXICaAhHQJkmqOKfnOl1fZQoaAZHQHMYcvduYQdoB00JA2gIR0CZJrHy3CsPdX2UKGgGR0BxMuR6nivQaAdNWgNoCEdAmSdTh99c8nV9lChoBkdAYk563y7PIGgHTegDaAhHQJknx1X/5tZ1fZQoaAZHQEt9rleWv8toB0vkaAhHQJkqaEVWS2Z1fZQoaAZHQG3A513dKuloB01bA2gIR0CZLDyeqaPTdX2UKGgGR0BjechX8wYcaAdN6ANoCEdAmS0fFefI0nV9lChoBkdAZ1+jY7JXAGgHTegDaAhHQJktc9Net0V1fZQoaAZHQHH/sa4tpVVoB02KAWgIR0CZMW6DoQnQdX2UKGgGR0BfC//7zkIYaAdN6ANoCEdAmTGaV+qioXV9lChoBkdAciaX5FgDzWgHTW4BaAhHQJlCyzTnaFp1fZQoaAZHQHAsCZnctXhoB01FAWgIR0CZQ1idat9ydX2UKGgGR0BxWtBzFMqSaAdNIgFoCEdAmUOUYbbUPXV9lChoBkdAbY57CzkZJmgHTVIBaAhHQJlETI4lyBF1fZQoaAZHQHJuv2saKk5oB01fAmgIR0CZRWmO2iL3dX2UKGgGR0BwwgDMeOn3aAdNGgFoCEdAmUZHm7rcCnV9lChoBkdARNbq0MPSUmgHS8hoCEdAmUo642CNCXV9lChoBkdAcEsfnwG4Z2gHTfMBaAhHQJlKwP9UCJZ1fZQoaAZHQG/q3FDOTq1oB01bAWgIR0CZSxG+9Jz1dX2UKGgGR0BwMV+fAbhnaAdNhANoCEdAmUxW38XN1XV9lChoBkdAb1+cc2itaWgHTXIBaAhHQJlM1p8F6iV1fZQoaAZHQHBnJpBX0XhoB02ZAWgIR0CZT2E+gUUPdX2UKGgGR0Bu95yCFsYVaAdNbgFoCEdAmVK/mknCwnV9lChoBkdAb0Ve2NNrTGgHTXIBaAhHQJlUZRdhRZV1fZQoaAZHQHHZdMCcPOJoB01xAWgIR0CZVbx4ptrLdX2UKGgGR0BiWvitJWeZaAdN6ANoCEdAmVaDkuHvdHV9lChoBkdAcoAmplz2e2gHTZEBaAhHQJlWljpcHGF1fZQoaAZHQHES1b/wRXhoB02yAWgIR0CZV3OOKfnPdX2UKGgGR0BxXQIE8q4IaAdNJQFoCEdAmVuGqHXVb3V9lChoBkdAcnCumJm/WWgHTdQBaAhHQJlbr2rXDm91fZQoaAZHQHKyyxRl6JJoB02/AWgIR0CZW8PxQSBcdX2UKGgGR0BwqDacqe9SaAdNZgFoCEdAmVwXeaa1C3V9lChoBkdAcic7bcoH9mgHTa4BaAhHQJlfosXizcB1fZQoaAZHQGXP8/dIoVpoB03oA2gIR0CZYKLf1pTNdX2UKGgGR0BvmLl90A93aAdNNQFoCEdAmWIgwj+rEXV9lChoBkdAQabPD50r9WgHS61oCEdAmWKa4MF2V3V9lChoBkdAcbvyAhB7eGgHTTIBaAhHQJli/ho/Rmd1fZQoaAZHQGFj5+hGpddoB03oA2gIR0CZYyhC+lCUdX2UKGgGR0Bxyga2nbZfaAdN0gFoCEdAmWMz9fkWAXV9lChoBkdAcWesWfseGWgHTaoBaAhHQJljfWxyGSJ1fZQoaAZHQHBZ1ijL0SRoB00vAWgIR0CZY+t3OfNBdX2UKGgGR0BxVvT7VJ+VaAdNFAFoCEdAmWZt7a7EpHV9lChoBkdAckFO2AoXsWgHTZkBaAhHQJlnGtLcsUZ1fZQoaAZHQHKXfqPfbbloB00IAWgIR0CZactMPBi1dX2UKGgGR0BBlb+Lm6oVaAdL82gIR0CZa2ZkCmuUdX2UKGgGR0BJXhIFvAGjaAdL0GgIR0CZa+E9t/FzdX2UKGgGR0Bx2hkmQbMpaAdNMwFoCEdAmX/t2HLzPXV9lChoBkdAcAw3FUADJWgHTfIBaAhHQJmAkNb1RLt1fZQoaAZHQHGYmPPszEdoB01SA2gIR0CZgVej2zv7dX2UKGgGR0Bw5BfmcOLBaAdNUgFoCEdAmYGGFN+LFXV9lChoBkdAbbqvvjOs1mgHTVoBaAhHQJmCSONo8IR1fZQoaAZHQHEfvnnuAqdoB01pAWgIR0CZglx2B8QadX2UKGgGR0BwISSvC/GmaAdNWAFoCEdAmYKWO+7DmHV9lChoBkdAclLGr0aqCGgHTYwCaAhHQJmCrrIHTql1fZQoaAZHQHFVp3LV4HJoB00OAmgIR0CZgqnqVyFPdX2UKGgGR0BspuMS9M9KaAdN0gJoCEdAmYL7tu1nd3V9lChoBkdAcu6nsLORkmgHTS4BaAhHQJmEKfywwCd1fZQoaAZHQHCQKg/TsppoB03lAWgIR0CZhVpHZsbedX2UKGgGR0Bx15PLxI8RaAdNSAFoCEdAmYXebZvkzXV9lChoBkdAVB+LsKLKm2gHS6xoCEdAmYhkHUtqYnV9lChoBkdAcIIq4YrJ82gHTXMBaAhHQJmK3vTgEU11fZQoaAZHQHB3ws052hZoB01GAWgIR0CZiwlk6LfldX2UKGgGR0BxUNqzqrzYaAdNYwFoCEdAmYubgsK9f3V9lChoBkdAcpAPGyX2NGgHTRgBaAhHQJmMYwEhaDB1fZQoaAZHQHC9dRFZxJdoB00jAWgIR0CZjdr8R+SbdX2UKGgGR0BwtqaDwpfAaAdNHwFoCEdAmY3vs7dSEXV9lChoBkdAb6yWQfZElWgHTSIBaAhHQJmOVmTTvy91fZQoaAZHQHE3GNzbN8poB01rAWgIR0CZjvY9gWrPdX2UKGgGR0ByXvleWv8qaAdL+WgIR0CZj6ZrpJPJdX2UKGgGR0Bv5PocJdB0aAdNFQFoCEdAmZAfkili0HV9lChoBkdAcb67uUliSmgHTWYBaAhHQJmQZQIldC51fZQoaAZHQG2nLx7RfF9oB01aAWgIR0CZkVX4TK1YdX2UKGgGR0ByWrXoTwlTaAdNkAFoCEdAmZF/YnOSn3V9lChoBkdAcGX8a4tpVWgHTR8BaAhHQJmSuv/zasZ1fZQoaAZHQG+TPDpC8e1oB00xAWgIR0CZlTByCFsYdX2UKGgGR0BwnJVWCEpRaAdNPQFoCEdAmZWC/wiJO3V9lChoBkdAb0UxPfsNUmgHTTsBaAhHQJmWMBltj1B1fZQoaAZHQG/Zd4eLehxoB003AWgIR0CZluRRdhRZdX2UKGgGR0BwzqKO1fE5aAdNWAJoCEdAmZfITGo73nV9lChoBkdAbmLQj2SMcmgHTUUBaAhHQJmYyEL6UJR1fZQoaAZHQG9dEq2BretoB00nAWgIR0CZmNu27Wd3dX2UKGgGR0Byrr3Dej20aAdNigJoCEdAmZpCKekHlnV9lChoBkdAcmvI9TxXn2gHTTEBaAhHQJmasCA+Y+l1fZQoaAZHQG/iQzLwF1VoB01+AWgIR0CZm03l0YCRdX2UKGgGR0BtQArFwT/RaAdNIAFoCEdAmZtn36AOKHV9lChoBkdAbdSpm29cr2gHTUYBaAhHQJmcg9wFTvR1fZQoaAZHQHG7dcfNiYtoB00iAWgIR0CZnOews5GSdX2UKGgGR0Byeau3c580aAdNvQFoCEdAmZ0Pms/6f3V9lChoBkdAbmOZnctXgmgHTbcBaAhHQJmehgogFHJ1fZQoaAZHQHDBqq0dBB1oB00OAWgIR0CZnuDsdDIBdX2UKGgGR0Bvwm+K0lZ6aAdNEAFoCEdAmZ+ZmqYJFHV9lChoBkdAcIeYbsF+u2gHTQ0BaAhHQJmhDM/yGzt1fZQoaAZHQHDOFoDgZTBoB00IAWgIR0CZof+VTrE+dX2UKGgGR0BsPwtpVS4waAdNGgJoCEdAmaJ8KTjebnV9lChoBkdAb6y4JeE7GWgHTRoBaAhHQJmik71ZkkN1fZQoaAZHQFLBM1CPZIxoB0vXaAhHQJmitfrrxAl1fZQoaAZHQHJXFRgqmTFoB01fAWgIR0CZoxHaN+9bdX2UKGgGR0BybeYVqN6xaAdNHAFoCEdAmaRwwsXiznV9lChoBkdAbhzSvTw2EWgHTTwBaAhHQJmlJHWjGkx1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -76,14 +76,14 @@
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
- "n_envs": 16,
80
- "n_steps": 1024,
81
  "gamma": 0.999,
82
- "gae_lambda": 0.98,
83
- "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
- "batch_size": 64,
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
@@ -94,6 +94,6 @@
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7eb611d3feb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7eb611d3ff40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7eb611d40040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7eb611d400d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7eb611d40160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7eb611d401f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7eb611d40280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7eb611d40310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7eb611d403a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7eb611d40430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7eb611d404c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7eb611d40550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7eb611d3a700>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2000896,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1690760967195047687,
30
+ "learning_rate": 0.00025,
31
+ "tensorboard_log": "runs",
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPhzjw0rLo/lZb5PkAcvT4tuAm8B0A1PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE5yaEzwc6MAWyUTSkBjAF0lEdAqanjdi2Dx3V9lChoBkdAcLaQ4S6DoWgHTWYCaAhHQKmrrH0btJF1fZQoaAZHQHA85qqOtGNoB00vAWgIR0CprI2QwK0EdX2UKGgGR0BwmMdaMaS+aAdNDQFoCEdAqa1WLrHEM3V9lChoBkdAYZkcaOxSpGgHTegDaAhHQKmw55nlGPR1fZQoaAZHQHGpOTvAoG9oB00qAWgIR0Cpsb7+T/yYdX2UKGgGR0BJiKwY+B6KaAdNAwFoCEdAqbKB4QjD9HV9lChoBkdAYzejHGS6lWgHTegDaAhHQKm1dgn+hoN1fZQoaAZHQGzskug6EJ1oB00aAWgIR0Cptuw++ueSdX2UKGgGR0BwQg3++/QCaAdNEAFoCEdAqbe7amGdqnV9lChoBkdAcN7Wl/H5rWgHTRYBaAhHQKm4jJLdvbZ1fZQoaAZHQHBxctGus91oB00BAWgIR0CpuUvO6d1/dX2UKGgGR0BwAV94NZvDaAdNOAFoCEdAqbo0EcKgI3V9lChoBkdAYbf/rjYI0WgHTegDaAhHQKm9znV5KOF1fZQoaAZHQFPHkCmuTzNoB0v5aAhHQKm+wvcrRSh1fZQoaAZHQHDvaBZpztFoB00ZAWgIR0Cpv8M2FWXDdX2UKGgGR0Bw8Sr3j+72aAdNNwFoCEdAqcEB6+nIhnV9lChoBkdAZFd4xk/bCmgHTegDaAhHQKnEliOvMbF1fZQoaAZHQG7X/aHsTnJoB00VAWgIR0CpxV26kIomdX2UKGgGR0BxQKQ6p5u7aAdNAwFoCEdAqcYWFDfFaXV9lChoBkdAbiOEt/WlM2gHTUABaAhHQKnHBsYVIqd1fZQoaAZHQHE88B6rvLJoB00RAWgIR0Cpx8RFRYRvdX2UKGgGR0Bibc6o2n89aAdN6ANoCEdAqcs4SYgJTnV9lChoBkdAcRFme18b72gHTT4BaAhHQKnMHqzqrzZ1fZQoaAZHQHBrzjzZpSJoB00PAWgIR0CpzOJVS4vwdX2UKGgGR0BynTjuKGcnaAdNQAFoCEdAqc3PNu+AVnV9lChoBkdAb+8Tzundf2gHTVIBaAhHQKnOzaY/mkp1fZQoaAZHQHAn7mQr+YNoB00xAWgIR0Cpz6tQ0oBrdX2UKGgGR0Bwtkx59mYjaAdNBgFoCEdAqdBozFdcB3V9lChoBkdAbqcajvd/KGgHTQsBaAhHQKnR2qHXVb11fZQoaAZHQG/Bvu5SWJJoB01MAWgIR0Cp0tquKXOXdX2UKGgGR0BwgXFAE+xGaAdL+WgIR0Cp050mMOwxdX2UKGgGR0Bm+7T8YQ8PaAdN6ANoCEdAqdbtjLB9C3V9lChoBkdAby8dxyXD32gHTRoBaAhHQKnY+mReTmp1fZQoaAZHQHBe0I9kjHJoB00vAWgIR0Cp2ezEaVD8dX2UKGgGR0BzGa4e9zwMaAdNUwFoCEdAqdrf6Q/5cnV9lChoBkdAchmt9QXQ+mgHTTYBaAhHQKnbw2uxKQJ1fZQoaAZHQHCyLK/20zFoB00oAWgIR0Cp3JMglnh9dX2UKGgGR0BsyMtZmqYJaAdNNAFoCEdAqd168tf5UXV9lChoBkdAcZkzZYgaFWgHTUABaAhHQKneZR2r4nF1fZQoaAZHQHKyJ+QU5+9oB01HAWgIR0Cp3/oicG1QdX2UKGgGR0BwDJMAWBSUaAdNIwFoCEdAqeDZqVQhwHV9lChoBkdAbIPk8zQ/o2gHTSgBaAhHQKnhtTRYzSF1fZQoaAZHQHGcyAH3UQVoB01FAWgIR0Cp4qY95hScdX2UKGgGR0ByO/uhK15TaAdNQAFoCEdAqeOd7tzCDXV9lChoBkdAbZo+10DEFWgHTRoBaAhHQKnkZw0fozN1fZQoaAZHQHH7Brvb48FoB00vAWgIR0Cp5UWH1vl2dX2UKGgGR0BxzixUvPC3aAdNKgFoCEdAqebE3++/QHV9lChoBkdAcI+hbnoxH2gHTSYBaAhHQKnnoBEKE391fZQoaAZHQHCRX1J17ppoB00LAWgIR0Cp6GLIHTqjdX2UKGgGR0Bxc0uK4x1xaAdNLQFoCEdAqek9foicG3V9lChoBkdAcUUYTj/+9GgHTS8BaAhHQKnqGd4mkWR1fZQoaAZHQCWaCrcTJyRoB0vbaAhHQKnqt30wrUd1fZQoaAZHQHBPjWPLgXNoB00oAWgIR0Cp65d5prULdX2UKGgGR0BJLJxWDHwPaAdL6mgIR0Cp7OjUd7v5dX2UKGgGR0BFStnXd0q6aAdLxGgIR0Cp7ZQwj+rEdX2UKGgGR0Bx9rEit7rtaAdNUgFoCEdAqe7fT5O8CnV9lChoBkdAcQJRwZOzp2gHTT0BaAhHQKnwI1UlzEJ1fZQoaAZHQG5BlA/s3Q5oB01bAmgIR0Cp8iiVKPGRdX2UKGgGR0BvNA7V8Ti9aAdNDAFoCEdAqfLv9R77bnV9lChoBkdAcQKN34bjtGgHTScBaAhHQKn0aH1OCXh1fZQoaAZHQHK/ReXzDoBoB00vAWgIR0Cp9Uq6FuejdX2UKGgGR0BumJul41P4aAdNDgFoCEdAqfYUxoIv8XV9lChoBkdAQJ7FwT/Q0GgHS89oCEdAqfaq3kPtlnV9lChoBkdAcTdmXw9aEGgHTTQBaAhHQKn3jYHxBmh1fZQoaAZHQGUi9U0elsRoB03oA2gIR0Cp+xb3Gn4xdX2UKGgGR0BwQFAPd2xIaAdNIAFoCEdAqfvwa99MK3V9lChoBkdAYkN1AZ88cWgHTegDaAhHQKn+3pW3jMp1fZQoaAZHQG8fjMeOn2toB00LAWgIR0Cp/6MYMvytdX2UKGgGR0BwXk+bExZdaAdNDgFoCEdAqgBlhPTG53V9lChoBkdAb7uzk6tDD2gHTRoBaAhHQKoBz/Yrauh1fZQoaAZHQG8Pi6Ymb9ZoB01IAWgIR0CqAr6yrxRVdX2UKGgGR0A01T101ZTyaAdL1mgIR0CqA1eHSF4+dX2UKGgGR0A/hIoE0SAZaAdL82gIR0CqBA2CNCJGdX2UKGgGR0Bx16ESM98raAdNRAFoCEdAqgT4mkWRBHV9lChoBkdAcLsoS+QEIWgHTRABaAhHQKoGCicG1QZ1fZQoaAZHQGOXJAUtZmtoB03oA2gIR0CqCmzYukDZdX2UKGgGR0BxAjSpiqhlaAdNMQFoCEdAqgtUiD/VAnV9lChoBkdAcfJ961LJ0WgHTWIBaAhHQKoMYAQQL/l1fZQoaAZHQG3ayxZ+x4ZoB002AWgIR0CqDUdM9KVZdX2UKGgGR0BwzH9itq59aAdNLAFoCEdAqg4ojW07bXV9lChoBkdAcAL+717IDGgHTR0BaAhHQKoPplCkXUJ1fZQoaAZHQHA5i35N47loB00OAWgIR0CqEHiUX531dX2UKGgGR0BxQDtlZowmaAdNQQFoCEdAqhFn4yoGZHV9lChoBkdAcRLA3T/hl2gHTU0BaAhHQKoSXr9l2/11fZQoaAZHQHGGsw+MZP5oB005AWgIR0CqE0iKR+z/dX2UKGgGR0BwCAKKHfuUaAdNIgFoCEdAqhQqB7NSqHV9lChoBkdAcPwlCCz1LGgHTS8BaAhHQKoVDdDYywh1fZQoaAZHQHANE6tDD0loB00ZAWgIR0CqFolF2FFldX2UKGgGR0Bw2ik0rK/3aAdNXAFoCEdAqhePnSv1UXV9lChoBkdAcajUQTVUdmgHTQgBaAhHQKoYW5wwTM91fZQoaAZHQHAUWRvFWGRoB01OAWgIR0CqGVJhWo3rdX2UKGgGR0BjRlfzBhx6aAdN6ANoCEdAqhzZQtSQ5nV9lChoBkdAQmzupjtojGgHTQABaAhHQKod3bD/EO11fZQoaAZHQEh0zk6tDD1oB0veaAhHQKoewsGPgel1fZQoaAZHQG8uHFo+OfdoB00vAWgIR0CqIBWqkuYhdX2UKGgGR0Bxjaj1wo9caAdNJAFoCEdAqiEhC4SYgXV9lChoBkdAcb3k0Jng52gHTS4BaAhHQKoiBeNT9891fZQoaAZHQHC+kP6KtPpoB01WAWgIR0CqIwod2gWadX2UKGgGR0BxvmgsbvPUaAdNPwFoCEdAqiPtyvLX+XVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 3908,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
+ "n_envs": 1,
80
+ "n_steps": 2048,
81
  "gamma": 0.999,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0123,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
 
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7e50c0cc7797f032627ee30a6041f2ee0092c823caa55514e1ccf24833794265
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab43110f31342cf5f10f7bbc70ac7047822c26b094e08e7f6c7250ccdf6e7b4d
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ae866e9e4546ae6cec6d497ef766c8e8b7824a0c5473f1fa4bddc413715099c
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:584b0a07f2419156b0f45291b43cfa4a37149bfeee45610f398a3290e7816442
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 216.38420689406152, "std_reward": 60.139212326899624, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-30T07:04:25.156583"}
 
1
+ {"mean_reward": 263.87709546588457, "std_reward": 19.84941285978893, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T00:46:09.007229"}