{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d0bb7c0da00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690699278331946595, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOr4r3hgNC6Sou4O40uwzxgqMw6nDmnvQAAgD8AAIA/QKfhvSmYG7pmVzO6DZVXNi/7fzqyx1Q5AACAPwAAAACtGQK+N5BbP2Khuz3r6Ki+TH+6PFN10D0AAAAAAAAAAJopJjz33bU/UnbjPW7Ya732Q308OVYKPQAAAAAAAAAATSo7veFYmLpvV4K4yRN6s1QdfLoJrJY3AACAPwAAgD+Atd89NCC8PgKmr73Ch5i+g+4uvdDQ6TwAAAAAAAAAAJqoS73hXIK6ktvVvJtS0rqNhcS5KrUCuwAAgD8AAIA/TVJ5vQVtDz7ZkQm6eWBRvi4FET03ODi9AAAAAAAAAAAzcnw+A9hbPz7UFz6xGPq+lSVVPkBwM70AAAAAAAAAAA22rb1qpkI+z3mOvT9JB753mnU7EKgKvAAAAAAAAAAAzd6rvCk4b7qHbKQ6dZqXNYfYUrrG0MC5AACAPwAAgD9mcpM+ZJcKPkeSPb3sLkW+RXsYPVPDOT4AAAAAAAAAAGCNBL7VMq4/sjPWvquJsr4vJ1q+O1RIvgAAAAAAAAAAgGFIPmU6wj4ejoS+2b6rvpTk4rxG3By+AAAAAAAAAAAzSO48P2s7P8hTYL0pa7u+ybaHPegJmb0AAAAAAAAAAKBHtT5yTus+XngOPFLDzr6etZQ+UtFIvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGj4a7mMfiiMAWyUTegDjAF0lEdAmSY7Z8KG+XV9lChoBkdAcBcp6QeV9mgHTXICaAhHQJkmqOKfnOl1fZQoaAZHQHMYcvduYQdoB00JA2gIR0CZJrHy3CsPdX2UKGgGR0BxMuR6nivQaAdNWgNoCEdAmSdTh99c8nV9lChoBkdAYk563y7PIGgHTegDaAhHQJknx1X/5tZ1fZQoaAZHQEt9rleWv8toB0vkaAhHQJkqaEVWS2Z1fZQoaAZHQG3A513dKuloB01bA2gIR0CZLDyeqaPTdX2UKGgGR0BjechX8wYcaAdN6ANoCEdAmS0fFefI0nV9lChoBkdAZ1+jY7JXAGgHTegDaAhHQJktc9Net0V1fZQoaAZHQHH/sa4tpVVoB02KAWgIR0CZMW6DoQnQdX2UKGgGR0BfC//7zkIYaAdN6ANoCEdAmTGaV+qioXV9lChoBkdAciaX5FgDzWgHTW4BaAhHQJlCyzTnaFp1fZQoaAZHQHAsCZnctXhoB01FAWgIR0CZQ1idat9ydX2UKGgGR0BxWtBzFMqSaAdNIgFoCEdAmUOUYbbUPXV9lChoBkdAbY57CzkZJmgHTVIBaAhHQJlETI4lyBF1fZQoaAZHQHJuv2saKk5oB01fAmgIR0CZRWmO2iL3dX2UKGgGR0BwwgDMeOn3aAdNGgFoCEdAmUZHm7rcCnV9lChoBkdARNbq0MPSUmgHS8hoCEdAmUo642CNCXV9lChoBkdAcEsfnwG4Z2gHTfMBaAhHQJlKwP9UCJZ1fZQoaAZHQG/q3FDOTq1oB01bAWgIR0CZSxG+9Jz1dX2UKGgGR0BwMV+fAbhnaAdNhANoCEdAmUxW38XN1XV9lChoBkdAb1+cc2itaWgHTXIBaAhHQJlM1p8F6iV1fZQoaAZHQHBnJpBX0XhoB02ZAWgIR0CZT2E+gUUPdX2UKGgGR0Bu95yCFsYVaAdNbgFoCEdAmVK/mknCwnV9lChoBkdAb0Ve2NNrTGgHTXIBaAhHQJlUZRdhRZV1fZQoaAZHQHHZdMCcPOJoB01xAWgIR0CZVbx4ptrLdX2UKGgGR0BiWvitJWeZaAdN6ANoCEdAmVaDkuHvdHV9lChoBkdAcoAmplz2e2gHTZEBaAhHQJlWljpcHGF1fZQoaAZHQHES1b/wRXhoB02yAWgIR0CZV3OOKfnPdX2UKGgGR0BxXQIE8q4IaAdNJQFoCEdAmVuGqHXVb3V9lChoBkdAcnCumJm/WWgHTdQBaAhHQJlbr2rXDm91fZQoaAZHQHKyyxRl6JJoB02/AWgIR0CZW8PxQSBcdX2UKGgGR0BwqDacqe9SaAdNZgFoCEdAmVwXeaa1C3V9lChoBkdAcic7bcoH9mgHTa4BaAhHQJlfosXizcB1fZQoaAZHQGXP8/dIoVpoB03oA2gIR0CZYKLf1pTNdX2UKGgGR0BvmLl90A93aAdNNQFoCEdAmWIgwj+rEXV9lChoBkdAQabPD50r9WgHS61oCEdAmWKa4MF2V3V9lChoBkdAcbvyAhB7eGgHTTIBaAhHQJli/ho/Rmd1fZQoaAZHQGFj5+hGpddoB03oA2gIR0CZYyhC+lCUdX2UKGgGR0Bxyga2nbZfaAdN0gFoCEdAmWMz9fkWAXV9lChoBkdAcWesWfseGWgHTaoBaAhHQJljfWxyGSJ1fZQoaAZHQHBZ1ijL0SRoB00vAWgIR0CZY+t3OfNBdX2UKGgGR0BxVvT7VJ+VaAdNFAFoCEdAmWZt7a7EpHV9lChoBkdAckFO2AoXsWgHTZkBaAhHQJlnGtLcsUZ1fZQoaAZHQHKXfqPfbbloB00IAWgIR0CZactMPBi1dX2UKGgGR0BBlb+Lm6oVaAdL82gIR0CZa2ZkCmuUdX2UKGgGR0BJXhIFvAGjaAdL0GgIR0CZa+E9t/FzdX2UKGgGR0Bx2hkmQbMpaAdNMwFoCEdAmX/t2HLzPXV9lChoBkdAcAw3FUADJWgHTfIBaAhHQJmAkNb1RLt1fZQoaAZHQHGYmPPszEdoB01SA2gIR0CZgVej2zv7dX2UKGgGR0Bw5BfmcOLBaAdNUgFoCEdAmYGGFN+LFXV9lChoBkdAbbqvvjOs1mgHTVoBaAhHQJmCSONo8IR1fZQoaAZHQHEfvnnuAqdoB01pAWgIR0CZglx2B8QadX2UKGgGR0BwISSvC/GmaAdNWAFoCEdAmYKWO+7DmHV9lChoBkdAclLGr0aqCGgHTYwCaAhHQJmCrrIHTql1fZQoaAZHQHFVp3LV4HJoB00OAmgIR0CZgqnqVyFPdX2UKGgGR0BspuMS9M9KaAdN0gJoCEdAmYL7tu1nd3V9lChoBkdAcu6nsLORkmgHTS4BaAhHQJmEKfywwCd1fZQoaAZHQHCQKg/TsppoB03lAWgIR0CZhVpHZsbedX2UKGgGR0Bx15PLxI8RaAdNSAFoCEdAmYXebZvkzXV9lChoBkdAVB+LsKLKm2gHS6xoCEdAmYhkHUtqYnV9lChoBkdAcIIq4YrJ82gHTXMBaAhHQJmK3vTgEU11fZQoaAZHQHB3ws052hZoB01GAWgIR0CZiwlk6LfldX2UKGgGR0BxUNqzqrzYaAdNYwFoCEdAmYubgsK9f3V9lChoBkdAcpAPGyX2NGgHTRgBaAhHQJmMYwEhaDB1fZQoaAZHQHC9dRFZxJdoB00jAWgIR0CZjdr8R+SbdX2UKGgGR0BwtqaDwpfAaAdNHwFoCEdAmY3vs7dSEXV9lChoBkdAb6yWQfZElWgHTSIBaAhHQJmOVmTTvy91fZQoaAZHQHE3GNzbN8poB01rAWgIR0CZjvY9gWrPdX2UKGgGR0ByXvleWv8qaAdL+WgIR0CZj6ZrpJPJdX2UKGgGR0Bv5PocJdB0aAdNFQFoCEdAmZAfkili0HV9lChoBkdAcb67uUliSmgHTWYBaAhHQJmQZQIldC51fZQoaAZHQG2nLx7RfF9oB01aAWgIR0CZkVX4TK1YdX2UKGgGR0ByWrXoTwlTaAdNkAFoCEdAmZF/YnOSn3V9lChoBkdAcGX8a4tpVWgHTR8BaAhHQJmSuv/zasZ1fZQoaAZHQG+TPDpC8e1oB00xAWgIR0CZlTByCFsYdX2UKGgGR0BwnJVWCEpRaAdNPQFoCEdAmZWC/wiJO3V9lChoBkdAb0UxPfsNUmgHTTsBaAhHQJmWMBltj1B1fZQoaAZHQG/Zd4eLehxoB003AWgIR0CZluRRdhRZdX2UKGgGR0BwzqKO1fE5aAdNWAJoCEdAmZfITGo73nV9lChoBkdAbmLQj2SMcmgHTUUBaAhHQJmYyEL6UJR1fZQoaAZHQG9dEq2BretoB00nAWgIR0CZmNu27Wd3dX2UKGgGR0Byrr3Dej20aAdNigJoCEdAmZpCKekHlnV9lChoBkdAcmvI9TxXn2gHTTEBaAhHQJmasCA+Y+l1fZQoaAZHQG/iQzLwF1VoB01+AWgIR0CZm03l0YCRdX2UKGgGR0BtQArFwT/RaAdNIAFoCEdAmZtn36AOKHV9lChoBkdAbdSpm29cr2gHTUYBaAhHQJmcg9wFTvR1fZQoaAZHQHG7dcfNiYtoB00iAWgIR0CZnOews5GSdX2UKGgGR0Byeau3c580aAdNvQFoCEdAmZ0Pms/6f3V9lChoBkdAbmOZnctXgmgHTbcBaAhHQJmehgogFHJ1fZQoaAZHQHDBqq0dBB1oB00OAWgIR0CZnuDsdDIBdX2UKGgGR0Bvwm+K0lZ6aAdNEAFoCEdAmZ+ZmqYJFHV9lChoBkdAcIeYbsF+u2gHTQ0BaAhHQJmhDM/yGzt1fZQoaAZHQHDOFoDgZTBoB00IAWgIR0CZof+VTrE+dX2UKGgGR0BsPwtpVS4waAdNGgJoCEdAmaJ8KTjebnV9lChoBkdAb6y4JeE7GWgHTRoBaAhHQJmik71ZkkN1fZQoaAZHQFLBM1CPZIxoB0vXaAhHQJmitfrrxAl1fZQoaAZHQHJXFRgqmTFoB01fAWgIR0CZoxHaN+9bdX2UKGgGR0BybeYVqN6xaAdNHAFoCEdAmaRwwsXiznV9lChoBkdAbhzSvTw2EWgHTTwBaAhHQJmlJHWjGkx1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}