Linaqruf commited on
Commit
0966b6c
·
1 Parent(s): 6e865bc

upload 25k step

Browse files
Files changed (2) hide show
  1. hitokomoru-25000-pruned.ckpt +3 -0
  2. prune-ckpt.py +58 -0
hitokomoru-25000-pruned.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a31a8007f35023b1e7439d7243cd1de080588eadb05b3c94b9d9bf4985d32aaf
3
+ size 3852134462
prune-ckpt.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import argparse
4
+ import glob
5
+
6
+
7
+ parser = argparse.ArgumentParser(description='Pruning')
8
+ parser.add_argument('--ckpt', type=str, default=None, help='path to model ckpt')
9
+ args = parser.parse_args()
10
+ ckpt = args.ckpt
11
+
12
+ def prune_it(p, keep_only_ema=False):
13
+ print(f"prunin' in path: {p}")
14
+ size_initial = os.path.getsize(p)
15
+ nsd = dict()
16
+ sd = torch.load(p, map_location="cpu")
17
+ print(sd.keys())
18
+ for k in sd.keys():
19
+ if k != "optimizer_states":
20
+ nsd[k] = sd[k]
21
+ else:
22
+ print(f"removing optimizer states for path {p}")
23
+ if "global_step" in sd:
24
+ print(f"This is global step {sd['global_step']}.")
25
+ if keep_only_ema:
26
+ sd = nsd["state_dict"].copy()
27
+ # infer ema keys
28
+ ema_keys = {k: "model_ema." + k[6:].replace(".", ".") for k in sd.keys() if k.startswith("model.")}
29
+ new_sd = dict()
30
+
31
+ for k in sd:
32
+ if k in ema_keys:
33
+ new_sd[k] = sd[ema_keys[k]].half()
34
+ elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]:
35
+ new_sd[k] = sd[k].half()
36
+
37
+ assert len(new_sd) == len(sd) - len(ema_keys)
38
+ nsd["state_dict"] = new_sd
39
+ else:
40
+ sd = nsd['state_dict'].copy()
41
+ new_sd = dict()
42
+ for k in sd:
43
+ new_sd[k] = sd[k].half()
44
+ nsd['state_dict'] = new_sd
45
+
46
+ fn = f"{os.path.splitext(p)[0]}-pruned.ckpt" if not keep_only_ema else f"{os.path.splitext(p)[0]}-ema-pruned.ckpt"
47
+ print(f"saving pruned checkpoint at: {fn}")
48
+ torch.save(nsd, fn)
49
+ newsize = os.path.getsize(fn)
50
+ MSG = f"New ckpt size: {newsize*1e-9:.2f} GB. " + \
51
+ f"Saved {(size_initial - newsize)*1e-9:.2f} GB by removing optimizer states"
52
+ if keep_only_ema:
53
+ MSG += " and non-EMA weights"
54
+ print(MSG)
55
+
56
+
57
+ if __name__ == "__main__":
58
+ prune_it(ckpt)