File size: 6,762 Bytes
da00ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
library_name: diffusers
license: openrail++
language:
- en
tags:
- text-to-image
- stable-diffusion
- lora
- safetensors
- stable-diffusion-xl
base_model: Linaqruf/animagine-xl-2.0
widget:
- text: face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck
parameter:
negative_prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
example_title: 1girl
- text: face focus, bishounen, masterpiece, best quality, 1boy, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck
parameter:
negative_prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry
example_title: 1boy
---
<style>
.title-container {
display: flex;
flex-direction: column; /* Allow vertical stacking of title and subtitle */
justify-content: center;
align-items: center;
height: 100vh;
background-color: #f5f5f5;
}
.title {
font-size: 2em;
text-align: center;
color: #333;
font-family: 'Verdana', sans-serif;
text-transform: uppercase;
padding: 1em;
box-shadow: 0px 0px 0px rgba(0,0,0,0.1);
}
.title span {
background: -webkit-linear-gradient(45deg, #ff9a9e, #fad0c4, #f6d365);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.custom-table {
table-layout: fixed;
width: 100%;
border-collapse: collapse;
margin-top: 2em;
}
.custom-table td {
width: 50%;
vertical-align: top;
padding: 10px;
box-shadow: 0px 0px 0px 0px rgba(0, 0, 0, 0.15);
}
.custom-image-container {
position: relative;
width: 100%;
margin-bottom: 0em;
overflow: hidden;
border-radius: 10px;
transition: transform .7s;
/* Smooth transition for the container */
}
.custom-image-container:hover {
transform: scale(1.05);
/* Scale the container on hover */
}
.custom-image {
width: 100%;
height: auto;
object-fit: cover;
border-radius: 10px;
transition: transform .7s;
margin-bottom: 0em;
}
.nsfw-filter {
filter: blur(8px); /* Apply a blur effect */
transition: filter 0.3s ease; /* Smooth transition for the blur effect */
}
.custom-image-container:hover .nsfw-filter {
filter: none; /* Remove the blur effect on hover */
}
</style>
<h1 class="title">
<span>Pastel Style XL LoRA</span>
</h1>
<table class="custom-table">
<tr>
<td>
<div class="custom-image-container">
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/Q1olwlimSCLG061XX6mRV.png" alt="sample1">
</div>
<div class="custom-image-container">
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/c29eOaqc_7BXFRKBfGn4J.png" alt="sample4">
</div>
</td>
<td>
<div class="custom-image-container">
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/OyiZlzjXwZ_k58QfDgcB0.png" alt="sample2">
</div>
<div class="custom-image-container">
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/6365c8dbf31ef76df4042821/oI1huB1ug5jMCjqqHoQVz.png" alt="sample3">
</td>
</tr>
</table>
<hr>
## Overview
**Pastel Style XL LoRA** is a specialized LoRA (Low-Rank Adaptation) adapter, expertly designed to work in conjunction with Animagine XL 2.0. This model specifically focuses on enhancing and imparting a pastel-style aesthetic to anime-themed images. It integrates smoothly with the Stable Diffusion framework, offering a unique capability to produce images with soft, pastel-like qualities without the need for specific keywords or tags.
<hr>
## Model Details
- **Developed by:** [Linaqruf](https://github.com/Linaqruf)
- **Model type:** LoRA adapter for Stable Diffusion XL
- **Model Description:** Pastel Style XL LoRA is a compact yet potent model aimed at augmenting the output of larger models, particularly Animagine XL 2.0. It's adept at generating and modifying high-quality anime-themed images, giving them a distinctive pastel aesthetic. This model is an excellent choice for those seeking to add a gentle, pastel touch to their anime creations.
- **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)
- **Finetuned from model:** [Animagine XL 2.0](https://huggingface.co/Linaqruf/animagine-xl-2.0)
<hr>
## 🧨 Diffusers Installation
Ensure the installation of the latest `diffusers` library, along with other essential packages:
```bash
pip install diffusers --upgrade
pip install transformers accelerate safetensors
```
The following Python script demonstrates how to utilize the LoRA with Animagine XL 2.0. The default scheduler is EulerAncestralDiscreteScheduler, but it can be explicitly defined for clarity.
```py
import torch
from diffusers import (
StableDiffusionXLPipeline,
EulerAncestralDiscreteScheduler,
AutoencoderKL
)
# Initialize LoRA model and weights
lora_model_id = "Linaqruf/pastel-style-xl-lora"
lora_filename = "pastel-style-xl-v2.safetensors"
# Load VAE component
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16
)
# Configure the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"Linaqruf/animagine-xl-2.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
# Load and fuse LoRA weights
pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
pipe.fuse_lora(lora_scale=0.6)
# Define prompts and generate image
prompt = "face focus, cute, masterpiece, best quality, 1girl, green hair, sweater, looking at viewer, upper body, beanie, outdoors, night, turtleneck"
negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=1024,
height=1024,
guidance_scale=12,
num_inference_steps=50
).images[0]
# Unfuse LoRA before saving the image
pipe.unfuse_lora()
image.save("anime_girl.png")
```
|