File size: 10,650 Bytes
fe65b7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import os
import sys
import logging
import speechbrain as sb
from hyperpyyaml import load_hyperpyyaml
import json
import random
import torch
from sklearn.preprocessing import LabelEncoder
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
logger = logging.getLogger(__name__)
SAMPLERATE = 16000
def prepare_data(data_original, save_json_train, save_json_valid, save_json_test, split_ratio=[80, 10, 10], seed=12):
# Setting seeds for reproducible code.
random.seed(seed)
# Check if data preparation has already been done (skip if files exist)
if skip(save_json_train, save_json_valid, save_json_test):
logger.info("Preparation completed in previous run, skipping.")
return
# Collect audio files and labels
wav_list = []
labels = os.listdir(data_original)
for label in labels:
label_dir = os.path.join(data_original, label)
if os.path.isdir(label_dir):
for audio_file in os.listdir(label_dir):
if audio_file.endswith('.wav'):
wav_file = os.path.join(label_dir, audio_file)
if os.path.isfile(wav_file):
wav_list.append((wav_file, label))
else:
logger.warning(f"Skipping invalid audio file: {wav_file}")
# Shuffle and split the data
random.shuffle(wav_list)
n_total = len(wav_list)
n_train = n_total * split_ratio[0] // 100
n_valid = n_total * split_ratio[1] // 100
train_set = wav_list[:n_train]
valid_set = wav_list[n_train:n_train + n_valid]
test_set = wav_list[n_train + n_valid:]
# Create JSON files for train, valid, and test sets
create_json(train_set, save_json_train)
create_json(valid_set, save_json_valid)
create_json(test_set, save_json_test)
logger.info(f"Created {save_json_train}, {save_json_valid}, and {save_json_test}")
def create_json(wav_list, json_file):
json_dict = {}
for wav_file, label in wav_list:
signal = sb.dataio.dataio.read_audio(wav_file)
duration = signal.shape[0] / SAMPLERATE
uttid = os.path.splitext(os.path.basename(wav_file))[0]
json_dict[uttid] = {
"wav": wav_file,
"length": duration,
"label": label,
}
with open(json_file, mode="w") as json_f:
json.dump(json_dict, json_f, indent=2)
logger.info(f"Created {json_file}")
def skip(*filenames):
for filename in filenames:
if not os.path.isfile(filename):
return False
return True
class EmoIdBrain(sb.Brain):
def compute_forward(self, batch, stage):
"""Computation pipeline based on an encoder + emotion classifier."""
batch = batch.to(self.device)
wavs, lens = batch.sig
outputs = self.modules.wav2vec2(wavs, lens)
# Apply pooling and MLP layers
outputs = self.hparams.avg_pool(outputs, lens)
outputs = outputs.view(outputs.shape[0], -1)
outputs = self.modules.output_mlp(outputs)
outputs = self.hparams.log_softmax(outputs)
return outputs
def compute_objectives(self, predictions, batch, stage):
emo_encoded_list = []
for sample in batch:
# Check if 'emo_encoded' exists in the sample
if 'emo_encoded' in sample:
emo_encoded_list.append(sample['emo_encoded'])
else:
# Log a warning and skip this sample if 'emo_encoded' is missing
logging.warning(f"'emo_encoded' key not found in sample: {sample}")
if not emo_encoded_list:
# If no valid 'emo_encoded' values were found in the batch, raise an error
raise ValueError("No valid 'emo_encoded' values found in the batch.")
# Convert emo_encoded_list to a torch tensor
emo_encoded = torch.tensor(emo_encoded_list, dtype=torch.long)
# Ensure emo_encoded is a tensor
if not isinstance(emo_encoded, torch.Tensor):
raise TypeError(f"Unsupported label type encountered: {type(emo_encoded)}")
# Perform any necessary operations with emo_encoded here
loss = self.hparams.compute_cost(predictions, emo_encoded)
if stage != sb.Stage.TRAIN:
self.error_metrics.append(batch.id, predictions, emo_encoded)
return loss
def on_stage_start(self, stage, epoch=None):
"""Gets called at the beginning of each epoch."""
self.loss_metric = sb.utils.metric_stats.MetricStats(metric=sb.nnet.losses.nll_loss)
if stage != sb.Stage.TRAIN:
self.error_metrics = self.hparams.error_stats()
def on_stage_end(self, stage, stage_loss, epoch=None):
"""Gets called at the end of an epoch."""
if stage == sb.Stage.TRAIN:
self.train_loss = stage_loss
else:
stats = {
"loss": stage_loss,
}
if self.error_metrics is not None and len(self.error_metrics.scores) > 0:
# Calculate error rate only if there are scores in the error_metrics
stats["error_rate"] = self.error_metrics.summarize("average")
else:
# Handle case where error_metrics are None or empty
stats["error_rate"] = float('nan') # Set error_rate to NaN if no scores available
if stage == sb.Stage.VALID:
old_lr, new_lr = self.hparams.lr_annealing(stats["error_rate"])
sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
self.hparams.train_logger.log_stats(
{"Epoch": epoch, "lr": old_lr},
train_stats={"loss": self.train_loss},
valid_stats=stats,
)
self.checkpointer.save_and_keep_only(meta=stats, min_keys=["error_rate"])
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
{"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stats,
)
def init_optimizers(self):
"""Initializes the optimizer."""
self.optimizer = self.hparams.opt_class(self.hparams.model.parameters())
if self.checkpointer is not None:
self.checkpointer.add_recoverable("optimizer", self.optimizer)
self.optimizers_dict = {"model_optimizer": self.optimizer}
def dataio_prep(hparams):
"""Prepares the datasets to be used in the brain class."""
# Define the audio processing pipeline
@sb.utils.data_pipeline.takes("wav")
@sb.utils.data_pipeline.provides("sig")
def audio_pipeline(wav):
"""Load the signal from a WAV file."""
sig = sb.dataio.dataio.read_audio(wav)
return sig
# Initialize the label encoder
label_encoder = sb.dataio.encoder.CategoricalEncoder()
label_encoder.add_unk()
label_to_index = {
'angry': 0,
'happy': 1,
'neutral': 2,
'sad': 3,
'surprise': 4,
'disgust': 5,
'fear': 6
}
@sb.utils.data_pipeline.takes("label")
@sb.utils.data_pipeline.provides("label", "emo_encoded")
def label_pipeline(label):
"""Encode the emotion label."""
if label in label_to_index:
emo_encoded = label_to_index[label]
else:
raise ValueError(f"Unknown label encountered: {label}")
yield label, torch.tensor(emo_encoded, dtype=torch.long)
# Define datasets dictionary
datasets = {}
data_info = {
"train": hparams["train_annotation"],
"valid": hparams["valid_annotation"],
"test": hparams["test_annotation"],
}
# Load datasets and apply pipelines
for dataset_name, json_path in data_info.items():
datasets[dataset_name] = sb.dataio.dataset.DynamicItemDataset.from_json(
json_path=json_path,
replacements={"data_root": hparams["data_original"]},
dynamic_items=[audio_pipeline, label_pipeline],
output_keys=["id", "sig", "label", "emo_encoded"],
)
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
label_encoder.load_or_create(
path=lab_enc_file,
from_didatasets=[datasets["train"]],
output_key="label",
)
return datasets
if __name__ == "__main__":
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
sb.utils.distributed.ddp_init_group(run_opts)
try:
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
data_original = hparams.get("data_original")
if data_original is not None:
data_original = os.path.normpath(data_original)
if not os.path.exists(data_original):
raise ValueError(f"data_original path '{data_original}' does not exist.")
else:
raise ValueError("data_original path is not specified in the YAML configuration.")
except Exception as e:
print("Error occurred", e)
sys.exit(1)
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
if not hparams["skip_prep"]:
prepare_kwargs = {
"data_original": hparams["data_original"],
"save_json_train": hparams["train_annotation"],
"save_json_valid": hparams["valid_annotation"],
"save_json_test": hparams["test_annotation"],
"split_ratio": hparams["split_ratio"],
"seed": hparams["seed"],
}
sb.utils.distributed.run_on_main(prepare_data, kwargs=prepare_kwargs)
datasets = dataio_prep(hparams)
hparams["wav2vec2"] = hparams["wav2vec2"].to(device=run_opts["device"])
if not hparams["freeze_wav2vec2"] and hparams["freeze_wav2vec2_conv"]:
hparams["wav2vec2"].model.feature_extractor._freeze_parameters()
emo_id_brain = EmoIdBrain(
modules=hparams["modules"],
opt_class=hparams["opt_class"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
emo_id_brain.fit(
epoch_counter=emo_id_brain.hparams.epoch_counter,
train_set=datasets["train"],
valid_set=datasets["valid"],
train_loader_kwargs=hparams["dataloader_options"],
valid_loader_kwargs=hparams["dataloader_options"],
)
test_stats = emo_id_brain.evaluate(
test_set=datasets["test"],
min_key="error_rate",
test_loader_kwargs=hparams["dataloader_options"],
)
|