|
seed: 1993 |
|
__set_seed: !apply:torch.manual_seed [!ref <seed>] |
|
|
|
|
|
data_original: D:/voice-emo/dat/ |
|
output_folder: !ref results/train_with_wav2vec2/<seed> |
|
save_folder: !ref <output_folder>/save |
|
train_log: !ref <output_folder>/train_log.txt |
|
|
|
|
|
|
|
|
|
wav2vec2_hub: facebook/wav2vec2-base |
|
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint |
|
|
|
|
|
train_annotation: !ref <output_folder>/train.json |
|
valid_annotation: !ref <output_folder>/valid.json |
|
test_annotation: !ref <output_folder>/test.json |
|
split_ratio: [80, 10, 10] |
|
skip_prep: False |
|
|
|
|
|
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger |
|
save_file: !ref <train_log> |
|
|
|
ckpt_interval_minutes: 15 |
|
|
|
|
|
number_of_epochs: 30 |
|
batch_size: 4 |
|
lr: 0.0001 |
|
lr_wav2vec2: 0.00001 |
|
|
|
|
|
freeze_wav2vec2: False |
|
|
|
|
|
freeze_wav2vec2_conv: True |
|
|
|
|
|
encoder_dim: 768 |
|
|
|
|
|
out_n_neurons: 7 |
|
|
|
dataloader_options: |
|
batch_size: !ref <batch_size> |
|
shuffle: True |
|
num_workers: 2 |
|
drop_last: False |
|
|
|
|
|
wav2vec2: !new:speechbrain.lobes.models.huggingface_transformers.wav2vec2.Wav2Vec2 |
|
source: !ref <wav2vec2_hub> |
|
output_norm: True |
|
freeze: !ref <freeze_wav2vec2> |
|
freeze_feature_extractor: !ref <freeze_wav2vec2_conv> |
|
save_path: !ref <wav2vec2_folder> |
|
|
|
avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling |
|
return_std: False |
|
|
|
output_mlp: !new:speechbrain.nnet.linear.Linear |
|
input_size: !ref <encoder_dim> |
|
n_neurons: !ref <out_n_neurons> |
|
bias: False |
|
|
|
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter |
|
limit: !ref <number_of_epochs> |
|
|
|
modules: |
|
wav2vec2: !ref <wav2vec2> |
|
output_mlp: !ref <output_mlp> |
|
|
|
model: !new:torch.nn.ModuleList |
|
- [!ref <output_mlp>] |
|
|
|
log_softmax: !new:speechbrain.nnet.activations.Softmax |
|
apply_log: True |
|
|
|
compute_cost: !name:speechbrain.nnet.losses.nll_loss |
|
|
|
error_stats: !name:speechbrain.utils.metric_stats.MetricStats |
|
metric: !name:speechbrain.nnet.losses.classification_error |
|
reduction: batch |
|
|
|
opt_class: !name:torch.optim.Adam |
|
lr: !ref <lr> |
|
|
|
wav2vec2_opt_class: !name:torch.optim.Adam |
|
lr: !ref <lr_wav2vec2> |
|
|
|
lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler |
|
initial_value: !ref <lr> |
|
improvement_threshold: 0.0025 |
|
annealing_factor: 0.9 |
|
patient: 0 |
|
|
|
lr_annealing_wav2vec2: !new:speechbrain.nnet.schedulers.NewBobScheduler |
|
initial_value: !ref <lr_wav2vec2> |
|
improvement_threshold: 0.0025 |
|
annealing_factor: 0.9 |
|
|
|
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer |
|
checkpoints_dir: !ref <save_folder> |
|
recoverables: |
|
model: !ref <model> |
|
wav2vec2: !ref <wav2vec2> |
|
lr_annealing_output: !ref <lr_annealing> |
|
lr_annealing_wav2vec2: !ref <lr_annealing_wav2vec2> |
|
counter: !ref <epoch_counter> |
|
|