--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0309O8 results: [] --- # V0309O8 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 20 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.284 | 0.09 | 10 | 1.5098 | | 0.8037 | 0.17 | 20 | 0.1367 | | 0.1548 | 0.26 | 30 | 0.1059 | | 0.1284 | 0.34 | 40 | 0.0860 | | 0.118 | 0.43 | 50 | 0.0858 | | 0.1038 | 0.51 | 60 | 0.0782 | | 0.0913 | 0.6 | 70 | 0.0745 | | 0.0917 | 0.68 | 80 | 0.0725 | | 0.0829 | 0.77 | 90 | 0.0750 | | 0.0821 | 0.85 | 100 | 0.0754 | | 0.0865 | 0.94 | 110 | 0.0711 | | 0.0875 | 1.02 | 120 | 0.0761 | | 0.084 | 1.11 | 130 | 0.0742 | | 0.0785 | 1.19 | 140 | 0.0672 | | 0.0753 | 1.28 | 150 | 0.0681 | | 0.0762 | 1.37 | 160 | 0.0755 | | 0.0732 | 1.45 | 170 | 0.0685 | | 0.0715 | 1.54 | 180 | 0.0713 | | 0.0709 | 1.62 | 190 | 0.0697 | | 0.0713 | 1.71 | 200 | 0.0680 | | 0.0753 | 1.79 | 210 | 0.0682 | | 0.068 | 1.88 | 220 | 0.0695 | | 0.066 | 1.96 | 230 | 0.0652 | | 0.0696 | 2.05 | 240 | 0.0668 | | 0.062 | 2.13 | 250 | 0.0691 | | 0.0618 | 2.22 | 260 | 0.0726 | | 0.0599 | 2.3 | 270 | 0.0746 | | 0.0661 | 2.39 | 280 | 0.0707 | | 0.0635 | 2.47 | 290 | 0.0686 | | 0.0627 | 2.56 | 300 | 0.0663 | | 0.0661 | 2.65 | 310 | 0.0658 | | 0.0568 | 2.73 | 320 | 0.0656 | | 0.06 | 2.82 | 330 | 0.0660 | | 0.0591 | 2.9 | 340 | 0.0664 | | 0.062 | 2.99 | 350 | 0.0662 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1