--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0413TUNE results: [] --- # V0413TUNE This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6884 | 0.09 | 20 | 0.1584 | | 0.1153 | 0.18 | 40 | 0.0993 | | 0.096 | 0.27 | 60 | 0.0854 | | 0.1014 | 0.36 | 80 | 0.0820 | | 0.0813 | 0.45 | 100 | 0.0795 | | 0.0869 | 0.54 | 120 | 0.0707 | | 0.0858 | 0.63 | 140 | 0.0831 | | 0.0841 | 0.73 | 160 | 0.0780 | | 0.0895 | 0.82 | 180 | 0.0732 | | 0.0908 | 0.91 | 200 | 0.0808 | | 0.0872 | 1.0 | 220 | 0.0807 | | 0.0726 | 1.09 | 240 | 0.0720 | | 0.0644 | 1.18 | 260 | 0.0740 | | 0.216 | 1.27 | 280 | 0.2003 | | 0.0945 | 1.36 | 300 | 0.0814 | | 0.0937 | 1.45 | 320 | 0.0842 | | 0.0868 | 1.54 | 340 | 0.0801 | | 0.0714 | 1.63 | 360 | 0.0709 | | 0.0632 | 1.72 | 380 | 0.0639 | | 0.0626 | 1.81 | 400 | 0.0518 | | 0.0467 | 1.9 | 420 | 0.0510 | | 0.0541 | 1.99 | 440 | 0.0475 | | 0.0486 | 2.08 | 460 | 0.0580 | | 0.046 | 2.18 | 480 | 0.0484 | | 0.0385 | 2.27 | 500 | 0.0493 | | 0.0446 | 2.36 | 520 | 0.0470 | | 0.037 | 2.45 | 540 | 0.0424 | | 0.0446 | 2.54 | 560 | 0.0433 | | 0.0297 | 2.63 | 580 | 0.0441 | | 0.0317 | 2.72 | 600 | 0.0426 | | 0.0481 | 2.81 | 620 | 0.0425 | | 0.0318 | 2.9 | 640 | 0.0421 | | 0.0332 | 2.99 | 660 | 0.0419 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1