Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,66 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- az
|
6 |
+
base_model:
|
7 |
+
- sentence-transformers/LaBSE
|
8 |
+
pipeline_tag: sentence-similarity
|
9 |
+
---
|
10 |
+
|
11 |
+
---
|
12 |
+
language:
|
13 |
+
- en
|
14 |
+
- az
|
15 |
+
tags:
|
16 |
+
- LaBSE
|
17 |
+
- sentence-transformers
|
18 |
+
- sentence-similarity
|
19 |
+
- dimensionality-reduction
|
20 |
+
- bert
|
21 |
+
license: apache-2.0
|
22 |
+
---
|
23 |
+
|
24 |
+
# Small LaBSE for English-Azerbaijani
|
25 |
+
|
26 |
+
This is an optimized version of [LaBSE (Language-agnostic BERT Sentence Embeddings)](https://huggingface.co/sentence-transformers/LaBSE) specifically for English and Azerbaijani language.
|
27 |
+
|
28 |
+
|
29 |
+
# Benchmark
|
30 |
+
|
31 |
+
| STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model |
|
32 |
+
|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|--------------------------------------|
|
33 |
+
| 0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE |
|
34 |
+
| 0.7400 | 0.8216 | 0.6946 | 0.7098 | 0.6781 | 0.7637 | 0.7222 | 0.7329 | LocalDoc/LaBSE-small-AZ |
|
35 |
+
| 0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm |
|
36 |
+
| 0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct |
|
37 |
+
| 0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large |
|
38 |
+
| 0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base |
|
39 |
+
| 0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small |
|
40 |
+
| 0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 |
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
## How to Use
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoTokenizer, AutoModel
|
48 |
+
import torch
|
49 |
+
|
50 |
+
# Load model and tokenizer
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained("LocalDoc/LaBSE-small-AZ")
|
52 |
+
model = AutoModel.from_pretrained("LocalDoc/LaBSE-small-AZ")
|
53 |
+
|
54 |
+
# Prepare texts
|
55 |
+
texts = [
|
56 |
+
"Hello world", # English
|
57 |
+
"Salam dünya" # Azerbaijani
|
58 |
+
]
|
59 |
+
|
60 |
+
# Tokenize and generate embeddings
|
61 |
+
encoded = tokenizer(texts, padding=True, truncation=True, return_tensors="pt")
|
62 |
+
with torch.no_grad():
|
63 |
+
embeddings = model(**encoded).pooler_output
|
64 |
+
|
65 |
+
# Compute similarity
|
66 |
+
similarity = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1], dim=0)
|