File size: 6,980 Bytes
15bd565
f14e85d
15bd565
ff35c0c
 
 
 
f14e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15bd565
ff35c0c
15bd565
ff35c0c
15bd565
 
ff35c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
021fcff
 
 
 
f14e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
---
license: apache-2.0
library_name: transformers
tags:
- conversational
datasets:
- Locutusque/hyperion-v1.5
model-index:
- name: Hyperion-1.5-Mistral-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 60.49
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.64
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.57
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.78
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.61
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 40.49
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
      name: Open LLM Leaderboard
---
# Model Card for Locutusque/Hyperion-1.5-Mistral-7B

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/1lL97kzuxqykXGUT6F593.png)

## Model Details
**Model Name**: Locutusque/Hyperion-1.5-Mistral-7B 
**Base Model**: mistralai/Mistral-7B-v0.1  
**Publisher**: M4-ai  
**Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning.  
**Language**: Multi-domain, English language.  
**License**: Apache-2.0  

## Model Description
`Locutusque/Hyperion-1.5-Mistral-7B` is a state-of-the-art language model fine-tuned on the Hyperion dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. 

## Intended Use
This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios:
- AI-driven tutoring systems for science, medicine, mathematics, and computer science.
- Assistive tools for professionals requiring fast and accurate domain-specific information retrieval.
- Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning.
- Automation in code generation and understanding complex programming context.

## Training Data
The `Locutusque/Hyperion-1.5-Mistral-7B` model was fine-tuned on the Hyperion-v1.5 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks.

## Evaluation Results
Coming soon...

## How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Locutusque/Hyperion-1.5-Mistral-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# For a text generation task
input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n"
input_ids = tokenizer.encode(input_text, return_tensors="pt")

# Generate a response
outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Known Limitations

The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality.
## Licensing Information

This model is released under the Apache-2.0 license.
## Citation Information

If you use Locutusque/Hyperion-1.5-Mistral-7B in your research, please cite the Hyperion dataset as follows:

```
@misc{sebastian_gabarain_2024,
  title = {Hyperion-1.5: Illuminating the Path to Advanced Reasoning with a High-Quality, Multidisciplinary Question Answering Dataset},
  author = {Sebastian Gabarain},
  publisher = {HuggingFace},
  year = {2024},
  url = {https://huggingface.co/datasets/Locutusque/hyperion-v1.5}
}
```

## Quants

exl2 and GGUF by bartowski - https://huggingface.co/bartowski/Hyperion-1.5-Mistral-7B-exl2 https://huggingface.co/bartowski/Hyperion-1.5-Mistral-7B-GGUF
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__Hyperion-1.5-Mistral-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |61.43|
|AI2 Reasoning Challenge (25-Shot)|60.49|
|HellaSwag (10-Shot)              |83.64|
|MMLU (5-Shot)                    |63.57|
|TruthfulQA (0-shot)              |41.78|
|Winogrande (5-shot)              |78.61|
|GSM8k (5-shot)                   |40.49|