File size: 6,980 Bytes
15bd565 f14e85d 15bd565 ff35c0c f14e85d 15bd565 ff35c0c 15bd565 ff35c0c 15bd565 ff35c0c 021fcff f14e85d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
---
license: apache-2.0
library_name: transformers
tags:
- conversational
datasets:
- Locutusque/hyperion-v1.5
model-index:
- name: Hyperion-1.5-Mistral-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 60.49
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.78
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 40.49
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B
name: Open LLM Leaderboard
---
# Model Card for Locutusque/Hyperion-1.5-Mistral-7B
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/1lL97kzuxqykXGUT6F593.png)
## Model Details
**Model Name**: Locutusque/Hyperion-1.5-Mistral-7B
**Base Model**: mistralai/Mistral-7B-v0.1
**Publisher**: M4-ai
**Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning.
**Language**: Multi-domain, English language.
**License**: Apache-2.0
## Model Description
`Locutusque/Hyperion-1.5-Mistral-7B` is a state-of-the-art language model fine-tuned on the Hyperion dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning.
## Intended Use
This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios:
- AI-driven tutoring systems for science, medicine, mathematics, and computer science.
- Assistive tools for professionals requiring fast and accurate domain-specific information retrieval.
- Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning.
- Automation in code generation and understanding complex programming context.
## Training Data
The `Locutusque/Hyperion-1.5-Mistral-7B` model was fine-tuned on the Hyperion-v1.5 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks.
## Evaluation Results
Coming soon...
## How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Locutusque/Hyperion-1.5-Mistral-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# For a text generation task
input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Generate a response
outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Known Limitations
The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality.
## Licensing Information
This model is released under the Apache-2.0 license.
## Citation Information
If you use Locutusque/Hyperion-1.5-Mistral-7B in your research, please cite the Hyperion dataset as follows:
```
@misc{sebastian_gabarain_2024,
title = {Hyperion-1.5: Illuminating the Path to Advanced Reasoning with a High-Quality, Multidisciplinary Question Answering Dataset},
author = {Sebastian Gabarain},
publisher = {HuggingFace},
year = {2024},
url = {https://huggingface.co/datasets/Locutusque/hyperion-v1.5}
}
```
## Quants
exl2 and GGUF by bartowski - https://huggingface.co/bartowski/Hyperion-1.5-Mistral-7B-exl2 https://huggingface.co/bartowski/Hyperion-1.5-Mistral-7B-GGUF
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__Hyperion-1.5-Mistral-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.43|
|AI2 Reasoning Challenge (25-Shot)|60.49|
|HellaSwag (10-Shot) |83.64|
|MMLU (5-Shot) |63.57|
|TruthfulQA (0-shot) |41.78|
|Winogrande (5-shot) |78.61|
|GSM8k (5-shot) |40.49|
|