LoneStriker commited on
Commit
c2566d6
·
1 Parent(s): 3f28796

Upload folder using huggingface_hub

Browse files
BAAI-Aquila-Model-License-Agreement.pdf ADDED
Binary file (227 kB). View file
 
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ ---
4
+
5
+
6
+ ![Aquila_logo](./log.jpeg)
7
+
8
+
9
+ <h4 align="center">
10
+ <p>
11
+ <b>English</b> |
12
+ <a href="https://huggingface.co/BAAI/AquilaChat2-70B-Expr/blob/main/README_zh.md">简体中文</a>
13
+ </p>
14
+ </h4>
15
+
16
+
17
+ We opensource our **Aquila2** series, now including **Aquila2**, the base language models, namely **Aquila2-7B**, **Aquila2-34B** and **Aquila2-70B-Expr** , as well as **AquilaChat2**, the chat models, namely **AquilaChat2-7B**, **AquilaChat2-34B** and **AquilaChat2-70B-Expr**, as well as the long-text chat models, namely **AquilaChat2-7B-16k** and **AquilaChat2-34B-16k**
18
+
19
+ The additional details of the Aquila model will be presented in the official technical report. Please stay tuned for updates on official channels.
20
+
21
+ ## Quick Start
22
+
23
+ ### 1. Inference
24
+
25
+ ```python
26
+ import torch
27
+ from transformers import AutoTokenizer, AutoModelForCausalLM
28
+ from transformers import BitsAndBytesConfig
29
+
30
+ model_info = "BAAI/Aquila2-70B-Expr"
31
+ tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
32
+ model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True)
33
+ model.eval()
34
+ text = "请给出10个要到北京旅游的理由。"
35
+ tokens = tokenizer.encode_plus(text)['input_ids']
36
+ tokens = torch.tensor(tokens)[None,].to(device)
37
+ stop_tokens = ["###", "[UNK]", "</s>"]
38
+ with torch.no_grad():
39
+ out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0]
40
+ out = tokenizer.decode(out.cpu().numpy().tolist())
41
+ print(out)
42
+ ```
43
+
44
+
45
+ ## License
46
+
47
+ Aquila2 series open-source model is licensed under [ BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/Aquila2-70B-Expr/blob/main/BAAI-Aquila-Model-License-Agreement.pdf)
README_zh.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ ---
4
+
5
+
6
+ ![Aquila_logo](./log.jpeg)
7
+
8
+
9
+ <h4 align="center">
10
+ <p>
11
+ <a href="https://huggingface.co/BAAI/Aquila2-70B-Expr/blob/main/README.md">English</a>
12
+ <b>简体中文</b> |
13
+ </p>
14
+ </h4>
15
+
16
+ # 悟道·天鹰(Aquila2)
17
+
18
+ 我们开源了我们的 **Aquila2** 系列,现在包括基础语言模型 **Aquila2-7B**,**Aquila2-34B** 和 **Aquila2-70B-Expr** ,对话模型 **AquilaChat2-7B**,**AquilaChat2-34B** 和**AquilaChat2-70B-Expr** ,长文本对话模型**AquilaChat2-7B-16k** 和 **AquilaChat2-34B-16k**
19
+
20
+ 悟道 · 天鹰 Aquila 模型的更多细节将在官方技术报告中呈现。请关注官方渠道更新。
21
+
22
+ ## 快速开始使用
23
+
24
+ ## 使用方式/How to use
25
+
26
+ ### 1. 推理/Inference
27
+
28
+ ```python
29
+ import torch
30
+ from transformers import AutoTokenizer, AutoModelForCausalLM
31
+ from transformers import BitsAndBytesConfig
32
+
33
+ model_info = "BAAI/Aquila2-70B-Expr"
34
+ tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True)
35
+ model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True)
36
+ model.eval()
37
+ text = "请给出10个要到北京旅游的理由。"
38
+ tokens = tokenizer.encode_plus(text)['input_ids']
39
+ tokens = torch.tensor(tokens)[None,].to(device)
40
+ stop_tokens = ["###", "[UNK]", "</s>"]
41
+ with torch.no_grad():
42
+ out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0]
43
+ out = tokenizer.decode(out.cpu().numpy().tolist())
44
+ print(out)
45
+ ```
46
+
47
+
48
+ ## 证书/License
49
+
50
+ Aquila2系列开源模型使用 [智源Aquila系列模型许可协议](https://huggingface.co/BAAI/Aquila2-70B-Expr/blob/main/BAAI-Aquila-Model-License-Agreement.pdf)
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "AquilaForCausalLM"
4
+ ],
5
+ "bos_token_id": 100006,
6
+ "eos_token_id": 100007,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 8192,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 28672,
11
+ "max_position_embeddings": 4096,
12
+ "model_type": "aquila",
13
+ "num_attention_heads": 64,
14
+ "num_hidden_layers": 80,
15
+ "num_key_value_heads": 8,
16
+ "pad_token_id": 0,
17
+ "pretraining_tp": 1,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_scaling": null,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "bfloat16",
22
+ "transformers_version": "4.31.0",
23
+ "use_cache": true,
24
+ "vocab_size": 100008
25
+ }
configuration_aquila.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ Aquila model configuration"""
21
+
22
+ from transformers import PretrainedConfig
23
+
24
+
25
+
26
+ class AquilaConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`AquilaModel`]. It is used to instantiate an Aquila
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the Aquila-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the Aquila model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`AquilaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
49
+ The non-linear activation function (function or string) in the decoder.
50
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
51
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
52
+ just in case (e.g., 512 or 1024 or 2048).
53
+ initializer_range (`float`, *optional*, defaults to 0.02):
54
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
55
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
56
+ The epsilon used by the rms normalization layers.
57
+ use_cache (`bool`, *optional*, defaults to `True`):
58
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
59
+ relevant if `config.is_decoder=True`.
60
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
61
+ Whether to tie weight embeddings
62
+ Example:
63
+
64
+ ```python
65
+ >>> from transformers import AquilaModel, AquilaConfig
66
+
67
+ >>> # Initializing a Aquila aquila-7b style configuration
68
+ >>> configuration = AquilaConfig()
69
+
70
+ >>> # Initializing a model from the aquila-7b style configuration
71
+ >>> model = AquilaModel(configuration)
72
+
73
+ >>> # Accessing the model configuration
74
+ >>> configuration = model.config
75
+ ```"""
76
+ model_type = "aquila"
77
+ keys_to_ignore_at_inference = ["past_key_values"]
78
+
79
+ def __init__(
80
+ self,
81
+ vocab_size=100008,
82
+ hidden_size=4096,
83
+ intermediate_size=11008,
84
+ num_hidden_layers=32,
85
+ num_attention_heads=32,
86
+ num_key_value_heads=None,
87
+ hidden_act="silu",
88
+ max_position_embeddings=2048,
89
+ initializer_range=0.02,
90
+ rms_norm_eps=1e-6,
91
+ use_cache=True,
92
+ pad_token_id=0,
93
+ bos_token_id=1,
94
+ eos_token_id=2,
95
+ pretraining_tp=1,
96
+ tie_word_embeddings=False,
97
+ rope_theta=10000.0,
98
+ rope_scaling=None,
99
+ **kwargs,
100
+ ):
101
+ self.vocab_size = vocab_size
102
+ self.max_position_embeddings = max_position_embeddings
103
+ self.hidden_size = hidden_size
104
+ self.intermediate_size = intermediate_size
105
+ self.num_hidden_layers = num_hidden_layers
106
+
107
+ # for backward compatibility
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+
111
+ self.num_key_value_heads = num_key_value_heads
112
+
113
+ self.num_attention_heads = num_attention_heads
114
+ self.hidden_act = hidden_act
115
+ self.initializer_range = initializer_range
116
+ self.rms_norm_eps = rms_norm_eps
117
+ self.pretraining_tp = pretraining_tp
118
+ self.use_cache = use_cache
119
+ self.rope_theta = rope_theta
120
+ self.rope_scaling = rope_scaling
121
+
122
+ super().__init__(
123
+ pad_token_id=pad_token_id,
124
+ bos_token_id=bos_token_id,
125
+ eos_token_id=eos_token_id,
126
+ tie_word_embeddings=tie_word_embeddings,
127
+ **kwargs,
128
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100006,
4
+ "eos_token_id": 100007,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.31.0"
7
+ }
huggingface-metadata.txt ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ url: https://huggingface.co/BAAI/Aquila2-70B-Expr
2
+ branch: main
3
+ download date: 2023-11-30 15:21:24
4
+ sha256sum:
5
+ 8f96f3093f76082311ea1912427d9a6218577202073a18dcb51f1e9aa3df54cf pytorch_model-00001-of-00082.bin
6
+ b63956f2042fe23e19257957a0cc15ac07d70ee0d9a445e70a98d5bbb9fcf3da pytorch_model-00002-of-00082.bin
7
+ e3237e3735d1a0b5310a61401d28d255cfd003268853305008de390fb7944f78 pytorch_model-00003-of-00082.bin
8
+ 2d653923a37402c77bbd28d9e17ad965eb71547e273e0070ffd46c17d529f754 pytorch_model-00004-of-00082.bin
9
+ ef33757e5603c3000d759a9ca9434c49cb7c959d875f7dc544037f4e3f8535df pytorch_model-00005-of-00082.bin
10
+ 47a8087d6e242dcedd07d0f1b587fefea7dee0c15cedb8e51148d2fb2a0ab0bd pytorch_model-00006-of-00082.bin
11
+ e6cb64f486453fa0b0b542ad4a0abe6efff4eb37c9a0667c58dde75db5d82557 pytorch_model-00007-of-00082.bin
12
+ 70d8d170e08b0279800e3c3e2c9c881b077baa67dc27bc3e03dc90dbebf3a858 pytorch_model-00008-of-00082.bin
13
+ b5afbff759ede35b0486dee907331b0a225ec3b1046f4329ea86175de0fd66fe pytorch_model-00009-of-00082.bin
14
+ 5341f7ab124dab5207fb47c675f4ac5d16aa1836398ba3c14403b32529cf81c3 pytorch_model-00010-of-00082.bin
15
+ a7d4e73ec7e816647bdc5bfce38b183325285cc4f35297767547e9cffbe13b76 pytorch_model-00011-of-00082.bin
16
+ 1e84f68b52bd984faa71e25f28c866f830995a5fa8817297b3d36b283df57d23 pytorch_model-00012-of-00082.bin
17
+ 71a41f02b87b6853395086590f356f40760ad430f6e321280dd0f99bfe0378b6 pytorch_model-00013-of-00082.bin
18
+ edd008264cfbdb30e70e86b2cb6db5593be091de8d6747a4f4c31ec71be32136 pytorch_model-00014-of-00082.bin
19
+ 74044181edea6b3e2a760d0a68058c1c98381ea3018abbff1c8140f816730322 pytorch_model-00015-of-00082.bin
20
+ 665f19feebeb1b080c71cedca92579a4220f8f2fe5f386d54b5f034f8e3236e6 pytorch_model-00016-of-00082.bin
21
+ 1647448e7616692874457f01a3d0cd0d1f1763348bfc79cf80e4f240a21b5bfc pytorch_model-00017-of-00082.bin
22
+ 74f0efb8b70c923e1b277e78f2cb2fcd7996662159195e4085a420ee78e2feef pytorch_model-00018-of-00082.bin
23
+ 1338024a596922c968c4588ffbd466b3026e92c3c927094859bfc6772e789190 pytorch_model-00019-of-00082.bin
24
+ 64fa4e0a3922455979c23df8c976e6e20d245d744471ff34f41c550718329fcc pytorch_model-00020-of-00082.bin
25
+ a7d9da7ec8d3ed925b9f7a3dcea2f6d6c8aafef6acdaf2c0fe11b9d9080fbf96 pytorch_model-00021-of-00082.bin
26
+ 413420444e15bc6c837cd94cb3651fcae0a5653dd728950f135b745866b9285a pytorch_model-00022-of-00082.bin
27
+ 688e740dd262e62eab9c8ec13db48ca146627e6ad6559956b2390bad6c6d5524 pytorch_model-00023-of-00082.bin
28
+ d2f919d80355f82ffbff8e75befd19857ce1edf495575b8595458bc797e59d94 pytorch_model-00024-of-00082.bin
29
+ 64139884fb7d0e8832c4ca17e8a8aab134294db03b2ed6fb64299c8cf7a6648a pytorch_model-00025-of-00082.bin
30
+ 908456cd52ac23313140d1c2746c8f7f7111f0068065bd5d023041b1da1c043d pytorch_model-00026-of-00082.bin
31
+ 7d94bd3cff8baa0c28f9001cd2cfa79db36e5d71db0740e066241f5ab5a20217 pytorch_model-00027-of-00082.bin
32
+ 8645d7d7e5ffc0f90285c3b588b5caadb07a26001bafc3ed7e9e1f3c5b376d78 pytorch_model-00028-of-00082.bin
33
+ ed6201c3648eb6c20cc3f77e33943e3b8de3bde73a3b1166e3d10b7f9c89c7a9 pytorch_model-00029-of-00082.bin
34
+ b2e0a0512fcc5061e47119c42e5a7b9f952d9eda3b374729d2eaf905e45d5cfb pytorch_model-00030-of-00082.bin
35
+ d857c778282753a6903f3ba5dfce9c45943e7c6b2e6752e701d59e64aac43402 pytorch_model-00031-of-00082.bin
36
+ 6b011d859e563ba5fcc82da7f61b7a3a634f413e086feb350fa788b1d8474df3 pytorch_model-00032-of-00082.bin
37
+ 085e45f87bd9d329280934ac65b4a878b50b0d6efece96edd6a698930784d29b pytorch_model-00033-of-00082.bin
38
+ c1f4708779c5cb4314bc88e1269623c24f921f503fcbabea5a466a2026d9bbf6 pytorch_model-00034-of-00082.bin
39
+ 295117fa92fe643534d3e36804bc4ffaaf4cf0b6ee8f40c1a1c2288d554d8cb8 pytorch_model-00035-of-00082.bin
40
+ d47f9f1662220de7546ca3d4249788ed07172ede0b9c513e2154691fb3b46ee0 pytorch_model-00036-of-00082.bin
41
+ 09078e9009c1f6a937f63b12540a22c750b1e8a0f9ca773ed463949b0804d99c pytorch_model-00037-of-00082.bin
42
+ 90cf080d32bfb921c4d94701f795aa15ad0da5df5f2dc27c68266f1c5324a9a0 pytorch_model-00038-of-00082.bin
43
+ eae206f6796d1241ffbed956354a2ae9f8ce133b88dfa699de278f6ca7f9c19d pytorch_model-00039-of-00082.bin
44
+ 5376bbb81bc343ba4f141cc33c153285e99608d4ef841f891a3195604c3200a0 pytorch_model-00040-of-00082.bin
45
+ 2befa2a635e16a40222780735a3462a3d4688a09bea79e37551fcd20d38afe34 pytorch_model-00041-of-00082.bin
46
+ ba0913841c97c5068a1dd9d77cc5349db56c3eb74adb1e4aaec86038a7fb6130 pytorch_model-00042-of-00082.bin
47
+ a48322adedd398c9332c690053334bcfd5ac899657c308ccb0211af200fac7d1 pytorch_model-00043-of-00082.bin
48
+ d564119e03706a15e4af36ae1c819c4ea677a0fcab17a0cf0798f852c5526654 pytorch_model-00044-of-00082.bin
49
+ 5413ece30b057d2120db396a063bb717ed41ebcd87456e10b7dfeac7cc4a0fc5 pytorch_model-00045-of-00082.bin
50
+ 755c4ed92688545864533360f9525fe22e1aca5a5e874ed305a77c16e1c88f06 pytorch_model-00046-of-00082.bin
51
+ fec26d3764fd5b5cf0c3a9420e92b9fbf8fc934cffb68b6b1ddbfbb98a61b9ca pytorch_model-00047-of-00082.bin
52
+ 86a3656ebd55b18e503d8c3be77cf4cbaf72eca3c655069f6204bf163209e3f8 pytorch_model-00048-of-00082.bin
53
+ 66a971a3652da2ce539d3322225d6f547b4dccf499ab278ca398e4bbfd8f034d pytorch_model-00049-of-00082.bin
54
+ cb1e8f0c0defcc9e2e595981a1dd2ccc1d94faa1c14365095ef7c046e6acc9ce pytorch_model-00050-of-00082.bin
55
+ 0ad3d9811bac6de69cf62dca58435e534723d73c6cbbb85f37437cc28885532d pytorch_model-00051-of-00082.bin
56
+ 2c7bf71606d4887cf5fa19d89db203c693963797aec946506942dc99ea2ec7bb pytorch_model-00052-of-00082.bin
57
+ ce981f93c771be4ac9fb6e9f004b91d60648dab14f19dbd443f9109a111e9259 pytorch_model-00053-of-00082.bin
58
+ d9e665bb7dddb64f5ba273f2c7081422d4ce63a1b222b5bdd52af804e64144b5 pytorch_model-00054-of-00082.bin
59
+ 32aef820129b196582de29485f6dde4cdcad4912f508c72a0a4fd96b6551ac3a pytorch_model-00055-of-00082.bin
60
+ f6bf87667052183055a7355b37bbb5a27cbc179eab84324f20c074216e153eda pytorch_model-00056-of-00082.bin
61
+ 18bdfb14f4bd994e8326a3f7f46f26d4b74fb86d1cde101e5e1db70368a2a237 pytorch_model-00057-of-00082.bin
62
+ 937ca1028e9bdb027597941c291932a53cd542507f178631f57b9b5613dd31fa pytorch_model-00058-of-00082.bin
63
+ 6982058011a7c37f2b62ba77cf88f0e85b165349275f0c0a3d5455c959ffd28a pytorch_model-00059-of-00082.bin
64
+ 8555c47072aae39be1555f8b5978b9d283ad06e8522f25373437679932b46b69 pytorch_model-00060-of-00082.bin
65
+ 08d8f4b366c80a635b4630df1fad47f3ced3cb1aeb5b3e0245b0c49908816e23 pytorch_model-00061-of-00082.bin
66
+ 3655b9020ed244df565f8a0a75f07244ef63f0ff47606e48e74cc335371724bc pytorch_model-00062-of-00082.bin
67
+ 96cce529716c4fcbc2ea9fe6f2d0d9cbfc1a086c6b3bea1cbb6c13202e74390b pytorch_model-00063-of-00082.bin
68
+ b3204806d0c2eff3d05412689bcbf1c1080de880b3e3cce3a2f39f82706b8507 pytorch_model-00064-of-00082.bin
69
+ 0604041fa9ab92166a464877f32a6227a2012903d8cb1b9244938cf8b6955791 pytorch_model-00065-of-00082.bin
70
+ 8623d48d235d111b5744c47691c59ff54342e5564cc6ee0bd80c55f2b39b0200 pytorch_model-00066-of-00082.bin
71
+ ba421cd767ddfeeffbbd4ddd1c4cfbc565de1ec287addea28c0ae21ca83c1361 pytorch_model-00067-of-00082.bin
72
+ c9a01342d1cf511fecf4c30bd3e663e21e1541e434ed77d8fe97d2a3c09bb47a pytorch_model-00068-of-00082.bin
73
+ cd783c71100b7757e1dfbd8a583873e51f0bb9684f8372b5892c3bbd8d1db85d pytorch_model-00069-of-00082.bin
74
+ 21b3c0decc8fae6762353ac158ae049e0f492ccf0c5d132e3e43ea469e001c74 pytorch_model-00070-of-00082.bin
75
+ 8938b65e742f4790a65bc39084e92fb59b596675e0f9ed3dfc31c4cd3f60012f pytorch_model-00071-of-00082.bin
76
+ 6114cc0e85060669b71ada97dc9034bcd9b1782752e68f842ac51bdcec5d72b4 pytorch_model-00072-of-00082.bin
77
+ 763c73cd10bb8458f09010a440230b0f9b39e09dde51f921f070598e0d8d4b7b pytorch_model-00073-of-00082.bin
78
+ d61ddc2e5fb46bd20b06809339389aeffdd1d7fd587de7440ed7e51918bbdd85 pytorch_model-00074-of-00082.bin
79
+ 0cdc96766f51e1343c8b4bfad649fa91a0391b8dc0df1892ea5e1f4f5c8a8ec7 pytorch_model-00075-of-00082.bin
80
+ 08b6ccdbb376b85f0233e4ac5e938dda2544d705ad7a0a918b147ab051131b49 pytorch_model-00076-of-00082.bin
81
+ 3daba0754e20cf912ab40eafb931db591afea8d40422ce4ddcbbb8cb0b26ea36 pytorch_model-00077-of-00082.bin
82
+ ef08823a64d3a834aa9cca3764d72ea78b34155e2934667e66cdcaf4d1c65ba6 pytorch_model-00078-of-00082.bin
83
+ 3b6a4406fe2650ff2900f613ae42a7a25620fcadd98ce9a411fd9a356acf6cee pytorch_model-00079-of-00082.bin
84
+ 192f3dbdc196eade7715002379d1aac1b8e59e4e37741c5a5b04563b34446425 pytorch_model-00080-of-00082.bin
85
+ 6eed903a25de3e95793b3326936f73ae849c3462448f5e9a869525c29ee504fe pytorch_model-00081-of-00082.bin
86
+ bc54a402233e8a221ed995a9a527bef14502cae8ff71bc43bd86fa2da35d91da pytorch_model-00082-of-00082.bin
log.jpeg ADDED
modeling_aquila.py ADDED
@@ -0,0 +1,1146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Aquila model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ from .configuration_aquila import AquilaConfig
34
+ from transformers import (
35
+ LogitsProcessorList,
36
+ MinLengthLogitsProcessor,
37
+ TopKLogitsWarper,
38
+ TemperatureLogitsWarper,
39
+ TopPLogitsWarper,
40
+ StoppingCriteriaList,
41
+ MaxLengthCriteria,
42
+ BitsAndBytesConfig,
43
+ )
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = "AquilaConfig"
48
+
49
+
50
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
51
+ def _make_causal_mask(
52
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
53
+ ):
54
+ """
55
+ Make causal mask used for bi-directional self-attention.
56
+ """
57
+ bsz, tgt_len = input_ids_shape
58
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
59
+ mask_cond = torch.arange(mask.size(-1), device=device)
60
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
61
+ mask = mask.to(dtype)
62
+
63
+ if past_key_values_length > 0:
64
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
65
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
66
+
67
+
68
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
69
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
70
+ """
71
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
72
+ """
73
+ bsz, src_len = mask.size()
74
+ tgt_len = tgt_len if tgt_len is not None else src_len
75
+
76
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
77
+
78
+ inverted_mask = 1.0 - expanded_mask
79
+
80
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
81
+
82
+
83
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Aquila
84
+ class AquilaRMSNorm(nn.Module):
85
+ def __init__(self, hidden_size, eps=1e-6):
86
+ """
87
+ AquilaRMSNorm is equivalent to T5LayerNorm
88
+ """
89
+ super().__init__()
90
+ self.weight = nn.Parameter(torch.ones(hidden_size))
91
+ self.variance_epsilon = eps
92
+
93
+ def forward(self, hidden_states):
94
+ input_dtype = hidden_states.dtype
95
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
96
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
97
+
98
+ return (self.weight * hidden_states).to(input_dtype)
99
+
100
+
101
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Aquila
102
+ class AquilaRotaryEmbedding(torch.nn.Module):
103
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
104
+ super().__init__()
105
+
106
+ self.dim = dim
107
+ self.max_position_embeddings = max_position_embeddings
108
+ self.base = base
109
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
110
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
111
+
112
+ # Build here to make `torch.jit.trace` work.
113
+ self._set_cos_sin_cache(
114
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
115
+ )
116
+
117
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
118
+ self.max_seq_len_cached = seq_len
119
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
120
+
121
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
122
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
123
+ emb = torch.cat((freqs, freqs), dim=-1)
124
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
125
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
126
+
127
+ def forward(self, x, seq_len=None):
128
+ # x: [bs, num_attention_heads, seq_len, head_size]
129
+ if seq_len > self.max_seq_len_cached:
130
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
131
+
132
+ return (
133
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
134
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
135
+ )
136
+
137
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Aquila
138
+ class AquilaLinearScalingRotaryEmbedding(AquilaRotaryEmbedding):
139
+ """AquilaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
140
+
141
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
142
+ self.scaling_factor = scaling_factor
143
+ super().__init__(dim, max_position_embeddings, base, device)
144
+
145
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
146
+ self.max_seq_len_cached = seq_len
147
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
148
+ t = t / self.scaling_factor
149
+
150
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
151
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
152
+ emb = torch.cat((freqs, freqs), dim=-1)
153
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
154
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
155
+
156
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Aquila
157
+ class AquilaDynamicNTKScalingRotaryEmbedding(AquilaRotaryEmbedding):
158
+ """AquilaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
159
+
160
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
161
+ self.scaling_factor = scaling_factor
162
+ super().__init__(dim, max_position_embeddings, base, device)
163
+
164
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
165
+ self.max_seq_len_cached = seq_len
166
+
167
+ if seq_len > self.max_position_embeddings:
168
+ base = self.base * (
169
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
170
+ ) ** (self.dim / (self.dim - 2))
171
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
172
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
173
+
174
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
175
+
176
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
177
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
178
+ emb = torch.cat((freqs, freqs), dim=-1)
179
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
180
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
181
+
182
+
183
+ def rotate_half(x):
184
+ """Rotates half the hidden dims of the input."""
185
+ x1 = x[..., : x.shape[-1] // 2]
186
+ x2 = x[..., x.shape[-1] // 2 :]
187
+ return torch.cat((-x2, x1), dim=-1)
188
+
189
+
190
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
191
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
192
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
193
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
194
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
195
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
196
+ q_embed = (q * cos) + (rotate_half(q) * sin)
197
+ k_embed = (k * cos) + (rotate_half(k) * sin)
198
+ return q_embed, k_embed
199
+
200
+
201
+ # Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Aquila
202
+ class AquilaMLP(nn.Module):
203
+ def __init__(self, config):
204
+ super().__init__()
205
+ self.config = config
206
+ self.hidden_size = config.hidden_size
207
+ self.intermediate_size = config.intermediate_size
208
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
209
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
210
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
211
+ self.act_fn = ACT2FN[config.hidden_act]
212
+
213
+ def forward(self, x):
214
+ if self.config.pretraining_tp > 1:
215
+ slice = self.intermediate_size // self.config.pretraining_tp
216
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
217
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
218
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
219
+
220
+ gate_proj = torch.cat(
221
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
222
+ )
223
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
224
+
225
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
226
+ down_proj = [
227
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
228
+ ]
229
+ down_proj = sum(down_proj)
230
+ else:
231
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
232
+
233
+ return down_proj
234
+
235
+
236
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
237
+ """
238
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
239
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
240
+ """
241
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
242
+ if n_rep == 1:
243
+ return hidden_states
244
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
245
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
246
+
247
+
248
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Aquila
249
+ class AquilaAttention(nn.Module):
250
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
251
+ def __init__(self, config: AquilaConfig):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.num_heads = config.num_attention_heads
256
+ self.head_dim = self.hidden_size // self.num_heads
257
+ self.num_key_value_heads = config.num_key_value_heads
258
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
259
+ self.max_position_embeddings = config.max_position_embeddings
260
+ self.rope_theta = config.rope_theta
261
+
262
+ if (self.head_dim * self.num_heads) != self.hidden_size:
263
+ raise ValueError(
264
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
265
+ f" and `num_heads`: {self.num_heads})."
266
+ )
267
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
268
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
269
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
270
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
271
+ self._init_rope()
272
+
273
+ def _init_rope(self):
274
+ if self.config.rope_scaling is None:
275
+ self.rotary_emb = AquilaRotaryEmbedding(
276
+ self.head_dim,
277
+ max_position_embeddings=self.max_position_embeddings,
278
+ base=self.rope_theta,
279
+ )
280
+ else:
281
+ scaling_type = self.config.rope_scaling["type"]
282
+ scaling_factor = self.config.rope_scaling["factor"]
283
+ if scaling_type == "linear":
284
+ self.rotary_emb = AquilaLinearScalingRotaryEmbedding(
285
+ self.head_dim,
286
+ max_position_embeddings=self.max_position_embeddings,
287
+ scaling_factor=scaling_factor,
288
+ base=self.rope_theta,
289
+ )
290
+ elif scaling_type == "dynamic":
291
+ self.rotary_emb = AquilaDynamicNTKScalingRotaryEmbedding(
292
+ self.head_dim,
293
+ max_position_embeddings=self.max_position_embeddings,
294
+ scaling_factor=scaling_factor,
295
+ base=self.rope_theta,
296
+ )
297
+ else:
298
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
299
+
300
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
301
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
302
+
303
+ def forward(
304
+ self,
305
+ hidden_states: torch.Tensor,
306
+ attention_mask: Optional[torch.Tensor] = None,
307
+ position_ids: Optional[torch.LongTensor] = None,
308
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
309
+ output_attentions: bool = False,
310
+ use_cache: bool = False,
311
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
312
+ bsz, q_len, _ = hidden_states.size()
313
+
314
+ if self.config.pretraining_tp > 1:
315
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
316
+ query_slices = self.q_proj.weight.split(
317
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
318
+ )
319
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
320
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
321
+
322
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
323
+ query_states = torch.cat(query_states, dim=-1)
324
+
325
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
326
+ key_states = torch.cat(key_states, dim=-1)
327
+
328
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
329
+ value_states = torch.cat(value_states, dim=-1)
330
+
331
+ else:
332
+ query_states = self.q_proj(hidden_states)
333
+ key_states = self.k_proj(hidden_states)
334
+ value_states = self.v_proj(hidden_states)
335
+
336
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
337
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
338
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
339
+
340
+ kv_seq_len = key_states.shape[-2]
341
+ if past_key_value is not None:
342
+ kv_seq_len += past_key_value[0].shape[-2]
343
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
344
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
345
+
346
+ if past_key_value is not None:
347
+ # reuse k, v, self_attention
348
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
349
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
350
+
351
+ past_key_value = (key_states, value_states) if use_cache else None
352
+
353
+ # repeat k/v heads if n_kv_heads < n_heads
354
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
355
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
356
+
357
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
358
+ attn_weights = torch.clamp(attn_weights, min=-1024., max=1024.)
359
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
360
+ raise ValueError(
361
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
362
+ f" {attn_weights.size()}"
363
+ )
364
+
365
+ if attention_mask is not None:
366
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
367
+ raise ValueError(
368
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
369
+ )
370
+ attn_weights = attn_weights + attention_mask
371
+
372
+ # upcast attention to fp32
373
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
374
+ attn_output = torch.matmul(attn_weights, value_states)
375
+
376
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
377
+ raise ValueError(
378
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
379
+ f" {attn_output.size()}"
380
+ )
381
+
382
+ attn_output = attn_output.transpose(1, 2).contiguous()
383
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
384
+
385
+ if self.config.pretraining_tp > 1:
386
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
387
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
388
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
389
+ else:
390
+ attn_output = self.o_proj(attn_output)
391
+
392
+ if not output_attentions:
393
+ attn_weights = None
394
+
395
+ return attn_output, attn_weights, past_key_value
396
+
397
+
398
+ # Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Aquila
399
+ class AquilaDecoderLayer(nn.Module):
400
+ def __init__(self, config: AquilaConfig):
401
+ super().__init__()
402
+ self.hidden_size = config.hidden_size
403
+ self.self_attn = AquilaAttention(config=config)
404
+ self.mlp = AquilaMLP(config)
405
+ self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
406
+ self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
407
+
408
+ def forward(
409
+ self,
410
+ hidden_states: torch.Tensor,
411
+ attention_mask: Optional[torch.Tensor] = None,
412
+ position_ids: Optional[torch.LongTensor] = None,
413
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
414
+ output_attentions: Optional[bool] = False,
415
+ use_cache: Optional[bool] = False,
416
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
417
+ """
418
+ Args:
419
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
420
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
421
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
422
+ output_attentions (`bool`, *optional*):
423
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
424
+ returned tensors for more detail.
425
+ use_cache (`bool`, *optional*):
426
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
427
+ (see `past_key_values`).
428
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
429
+ """
430
+
431
+ residual = hidden_states
432
+
433
+ hidden_states = self.input_layernorm(hidden_states)
434
+
435
+ # Self Attention
436
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
437
+ hidden_states=hidden_states,
438
+ attention_mask=attention_mask,
439
+ position_ids=position_ids,
440
+ past_key_value=past_key_value,
441
+ output_attentions=output_attentions,
442
+ use_cache=use_cache,
443
+ )
444
+ hidden_states = residual + hidden_states
445
+
446
+ # Fully Connected
447
+ residual = hidden_states
448
+ hidden_states = self.post_attention_layernorm(hidden_states)
449
+ hidden_states = self.mlp(hidden_states)
450
+ hidden_states = residual + hidden_states
451
+
452
+ outputs = (hidden_states,)
453
+
454
+ if output_attentions:
455
+ outputs += (self_attn_weights,)
456
+
457
+ if use_cache:
458
+ outputs += (present_key_value,)
459
+
460
+ return outputs
461
+
462
+ AQUILA_START_DOCSTRING = r"""
463
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
464
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
465
+ etc.)
466
+
467
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
468
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
469
+ and behavior.
470
+
471
+ Parameters:
472
+ config ([`AquilaConfig`]):
473
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
474
+ load the weights associated with the model, only the configuration. Check out the
475
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
476
+ """
477
+
478
+
479
+ @add_start_docstrings(
480
+ "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
481
+ AQUILA_START_DOCSTRING,
482
+ )
483
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->Aquila
484
+ class AquilaPreTrainedModel(PreTrainedModel):
485
+ config_class = AquilaConfig
486
+ base_model_prefix = "model"
487
+ supports_gradient_checkpointing = True
488
+ _no_split_modules = ["AquilaDecoderLayer"]
489
+ _skip_keys_device_placement = "past_key_values"
490
+
491
+ def _init_weights(self, module):
492
+ std = self.config.initializer_range
493
+ if isinstance(module, nn.Linear):
494
+ module.weight.data.normal_(mean=0.0, std=std)
495
+ if module.bias is not None:
496
+ module.bias.data.zero_()
497
+ elif isinstance(module, nn.Embedding):
498
+ module.weight.data.normal_(mean=0.0, std=std)
499
+ if module.padding_idx is not None:
500
+ module.weight.data[module.padding_idx].zero_()
501
+
502
+ def _set_gradient_checkpointing(self, module, value=False):
503
+ if isinstance(module, AquilaModel):
504
+ module.gradient_checkpointing = value
505
+
506
+
507
+ AQUILA_INPUTS_DOCSTRING = r"""
508
+ Args:
509
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
510
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
511
+ it.
512
+
513
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
514
+ [`PreTrainedTokenizer.__call__`] for details.
515
+
516
+ [What are input IDs?](../glossary#input-ids)
517
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
518
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
519
+
520
+ - 1 for tokens that are **not masked**,
521
+ - 0 for tokens that are **masked**.
522
+
523
+ [What are attention masks?](../glossary#attention-mask)
524
+
525
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
526
+ [`PreTrainedTokenizer.__call__`] for details.
527
+
528
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
529
+ `past_key_values`).
530
+
531
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
532
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
533
+ information on the default strategy.
534
+
535
+ - 1 indicates the head is **not masked**,
536
+ - 0 indicates the head is **masked**.
537
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
538
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
539
+ config.n_positions - 1]`.
540
+
541
+ [What are position IDs?](../glossary#position-ids)
542
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
543
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
544
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
545
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
546
+
547
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
548
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
549
+
550
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
551
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
552
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
553
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
554
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
555
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
556
+ model's internal embedding lookup matrix.
557
+ use_cache (`bool`, *optional*):
558
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
559
+ `past_key_values`).
560
+ output_attentions (`bool`, *optional*):
561
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
562
+ tensors for more detail.
563
+ output_hidden_states (`bool`, *optional*):
564
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
565
+ more detail.
566
+ return_dict (`bool`, *optional*):
567
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
568
+ """
569
+
570
+
571
+ @add_start_docstrings(
572
+ "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
573
+ AQUILA_START_DOCSTRING,
574
+ )
575
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel with LLAMA->AQUILA,Llama->Aquila
576
+ class AquilaModel(AquilaPreTrainedModel):
577
+ """
578
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AquilaDecoderLayer`]
579
+
580
+ Args:
581
+ config: AquilaConfig
582
+ """
583
+
584
+ def __init__(self, config: AquilaConfig):
585
+ super().__init__(config)
586
+ self.padding_idx = config.pad_token_id
587
+ self.vocab_size = config.vocab_size
588
+
589
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
590
+ self.layers = nn.ModuleList([AquilaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
591
+ self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
592
+
593
+ self.gradient_checkpointing = False
594
+ # Initialize weights and apply final processing
595
+ self.post_init()
596
+
597
+ def get_input_embeddings(self):
598
+ return self.embed_tokens
599
+
600
+ def set_input_embeddings(self, value):
601
+ self.embed_tokens = value
602
+
603
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
604
+ # create causal mask
605
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
606
+ combined_attention_mask = None
607
+ if input_shape[-1] > 1:
608
+ combined_attention_mask = _make_causal_mask(
609
+ input_shape,
610
+ inputs_embeds.dtype,
611
+ device=inputs_embeds.device,
612
+ past_key_values_length=past_key_values_length,
613
+ )
614
+
615
+ if attention_mask is not None:
616
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
617
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
618
+ inputs_embeds.device
619
+ )
620
+ combined_attention_mask = (
621
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
622
+ )
623
+
624
+ return combined_attention_mask
625
+
626
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
627
+ def forward(
628
+ self,
629
+ input_ids: torch.LongTensor = None,
630
+ attention_mask: Optional[torch.Tensor] = None,
631
+ position_ids: Optional[torch.LongTensor] = None,
632
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
633
+ inputs_embeds: Optional[torch.FloatTensor] = None,
634
+ use_cache: Optional[bool] = None,
635
+ output_attentions: Optional[bool] = None,
636
+ output_hidden_states: Optional[bool] = None,
637
+ return_dict: Optional[bool] = None,
638
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
639
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
640
+ output_hidden_states = (
641
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
642
+ )
643
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
644
+
645
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
646
+
647
+ # retrieve input_ids and inputs_embeds
648
+ if input_ids is not None and inputs_embeds is not None:
649
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
650
+ elif input_ids is not None:
651
+ batch_size, seq_length = input_ids.shape
652
+ elif inputs_embeds is not None:
653
+ batch_size, seq_length, _ = inputs_embeds.shape
654
+ else:
655
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
656
+
657
+ seq_length_with_past = seq_length
658
+ past_key_values_length = 0
659
+
660
+ if past_key_values is not None:
661
+ past_key_values_length = past_key_values[0][0].shape[2]
662
+ seq_length_with_past = seq_length_with_past + past_key_values_length
663
+
664
+ if position_ids is None:
665
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
666
+ position_ids = torch.arange(
667
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
668
+ )
669
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
670
+ else:
671
+ position_ids = position_ids.view(-1, seq_length).long()
672
+
673
+ if inputs_embeds is None:
674
+ inputs_embeds = self.embed_tokens(input_ids)
675
+ # embed positions
676
+ if attention_mask is None:
677
+ attention_mask = torch.ones(
678
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
679
+ )
680
+ attention_mask = self._prepare_decoder_attention_mask(
681
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
682
+ )
683
+
684
+ hidden_states = inputs_embeds
685
+
686
+ if self.gradient_checkpointing and self.training:
687
+ if use_cache:
688
+ logger.warning_once(
689
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
690
+ )
691
+ use_cache = False
692
+
693
+ # decoder layers
694
+ all_hidden_states = () if output_hidden_states else None
695
+ all_self_attns = () if output_attentions else None
696
+ next_decoder_cache = () if use_cache else None
697
+
698
+ for idx, decoder_layer in enumerate(self.layers):
699
+ if output_hidden_states:
700
+ all_hidden_states += (hidden_states,)
701
+
702
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
703
+
704
+ if self.gradient_checkpointing and self.training:
705
+
706
+ def create_custom_forward(module):
707
+ def custom_forward(*inputs):
708
+ # None for past_key_value
709
+ return module(*inputs, past_key_value, output_attentions)
710
+
711
+ return custom_forward
712
+
713
+ layer_outputs = torch.utils.checkpoint.checkpoint(
714
+ create_custom_forward(decoder_layer),
715
+ hidden_states,
716
+ attention_mask,
717
+ position_ids,
718
+ )
719
+ else:
720
+ layer_outputs = decoder_layer(
721
+ hidden_states,
722
+ attention_mask=attention_mask,
723
+ position_ids=position_ids,
724
+ past_key_value=past_key_value,
725
+ output_attentions=output_attentions,
726
+ use_cache=use_cache,
727
+ )
728
+
729
+ hidden_states = layer_outputs[0]
730
+
731
+ if use_cache:
732
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
733
+
734
+ if output_attentions:
735
+ all_self_attns += (layer_outputs[1],)
736
+
737
+ hidden_states = self.norm(hidden_states)
738
+
739
+ # add hidden states from the last decoder layer
740
+ if output_hidden_states:
741
+ all_hidden_states += (hidden_states,)
742
+
743
+ next_cache = next_decoder_cache if use_cache else None
744
+ if not return_dict:
745
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
746
+ return BaseModelOutputWithPast(
747
+ last_hidden_state=hidden_states,
748
+ past_key_values=next_cache,
749
+ hidden_states=all_hidden_states,
750
+ attentions=all_self_attns,
751
+ )
752
+
753
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->AQUILA,Llama->Aquila
754
+ class AquilaForCausalLM(AquilaPreTrainedModel):
755
+ _tied_weights_keys = ["lm_head.weight"]
756
+
757
+ def __init__(self, config):
758
+ super().__init__(config)
759
+ self.model = AquilaModel(config)
760
+ self.vocab_size = config.vocab_size
761
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
762
+
763
+ # Initialize weights and apply final processing
764
+ self.post_init()
765
+
766
+ def get_input_embeddings(self):
767
+ return self.model.embed_tokens
768
+
769
+ def set_input_embeddings(self, value):
770
+ self.model.embed_tokens = value
771
+
772
+ def get_output_embeddings(self):
773
+ return self.lm_head
774
+
775
+ def set_output_embeddings(self, new_embeddings):
776
+ self.lm_head = new_embeddings
777
+
778
+ def set_decoder(self, decoder):
779
+ self.model = decoder
780
+
781
+ def get_decoder(self):
782
+ return self.model
783
+
784
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
785
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
786
+ def forward(
787
+ self,
788
+ input_ids: torch.LongTensor = None,
789
+ attention_mask: Optional[torch.Tensor] = None,
790
+ position_ids: Optional[torch.LongTensor] = None,
791
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
792
+ inputs_embeds: Optional[torch.FloatTensor] = None,
793
+ labels: Optional[torch.LongTensor] = None,
794
+ use_cache: Optional[bool] = None,
795
+ output_attentions: Optional[bool] = None,
796
+ output_hidden_states: Optional[bool] = None,
797
+ return_dict: Optional[bool] = None,
798
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
799
+ r"""
800
+ Args:
801
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
802
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
803
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
804
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
805
+
806
+ Returns:
807
+
808
+ Example:
809
+
810
+ ```python
811
+ >>> from transformers import AutoTokenizer, AquilaForCausalLM
812
+
813
+ >>> model = AquilaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
814
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
815
+
816
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
817
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
818
+
819
+ >>> # Generate
820
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
821
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
822
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
823
+ ```"""
824
+
825
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
826
+ output_hidden_states = (
827
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
828
+ )
829
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
830
+
831
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
832
+ outputs = self.model(
833
+ input_ids=input_ids,
834
+ attention_mask=attention_mask,
835
+ position_ids=position_ids,
836
+ past_key_values=past_key_values,
837
+ inputs_embeds=inputs_embeds,
838
+ use_cache=use_cache,
839
+ output_attentions=output_attentions,
840
+ output_hidden_states=output_hidden_states,
841
+ return_dict=return_dict,
842
+ )
843
+
844
+ hidden_states = outputs[0]
845
+ if self.config.pretraining_tp > 1:
846
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
847
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
848
+ logits = torch.cat(logits, dim=-1)
849
+ else:
850
+ logits = self.lm_head(hidden_states)
851
+ logits = logits.float()
852
+
853
+ loss = None
854
+ if labels is not None:
855
+ # Shift so that tokens < n predict n
856
+ shift_logits = logits[..., :-1, :].contiguous()
857
+ shift_labels = labels[..., 1:].contiguous()
858
+ # Flatten the tokens
859
+ loss_fct = CrossEntropyLoss()
860
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
861
+ shift_labels = shift_labels.view(-1)
862
+ # Enable model parallelism
863
+ shift_labels = shift_labels.to(shift_logits.device)
864
+ loss = loss_fct(shift_logits, shift_labels)
865
+
866
+ if not return_dict:
867
+ output = (logits,) + outputs[1:]
868
+ return (loss,) + output if loss is not None else output
869
+
870
+ return CausalLMOutputWithPast(
871
+ loss=loss,
872
+ logits=logits,
873
+ past_key_values=outputs.past_key_values,
874
+ hidden_states=outputs.hidden_states,
875
+ attentions=outputs.attentions,
876
+ )
877
+
878
+ def prepare_inputs_for_generation(
879
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
880
+ ):
881
+ if past_key_values:
882
+ input_ids = input_ids[:, -1:]
883
+
884
+ position_ids = kwargs.get("position_ids", None)
885
+ if attention_mask is not None and position_ids is None:
886
+ # create position_ids on the fly for batch generation
887
+ position_ids = attention_mask.long().cumsum(-1) - 1
888
+ position_ids.masked_fill_(attention_mask == 0, 1)
889
+ if past_key_values:
890
+ position_ids = position_ids[:, -1].unsqueeze(-1)
891
+
892
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
893
+ if inputs_embeds is not None and past_key_values is None:
894
+ model_inputs = {"inputs_embeds": inputs_embeds}
895
+ else:
896
+ model_inputs = {"input_ids": input_ids}
897
+
898
+ model_inputs.update(
899
+ {
900
+ "position_ids": position_ids,
901
+ "past_key_values": past_key_values,
902
+ "use_cache": kwargs.get("use_cache"),
903
+ "attention_mask": attention_mask,
904
+ }
905
+ )
906
+ return model_inputs
907
+
908
+ @staticmethod
909
+ def _reorder_cache(past_key_values, beam_idx):
910
+ reordered_past = ()
911
+ for layer_past in past_key_values:
912
+ reordered_past += (
913
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
914
+ )
915
+ return reordered_past
916
+
917
+ def predict(self, text, tokenizer=None,
918
+ max_gen_len=200, top_p=0.95,
919
+ seed=1234, topk=100,
920
+ temperature=0.9,
921
+ sft=True, convo_template = "aquila-chat",
922
+ device = "cuda"):
923
+
924
+ vocab = tokenizer.get_vocab()
925
+ #device = device
926
+ id2word = {v:k for k, v in vocab.items()}
927
+
928
+
929
+ set_random_seed(seed)
930
+ if temperature == 0:
931
+ topk = 1
932
+ temperature = 1.0
933
+ if sft:
934
+ tokens = covert_prompt_to_input_ids_with_history(text, history=[], tokenizer=tokenizer, max_token=2048, convo_template=convo_template)
935
+ tokens = torch.tensor(tokens)[None,].to(device)
936
+ else :
937
+ tokens = tokenizer.encode_plus(text)["input_ids"]
938
+ print(tokenizer.decode(tokens))
939
+ tokens = torch.tensor(tokens)[None,].to(device)
940
+ input_length = len(tokens[0])
941
+ with torch.no_grad():
942
+
943
+ # instantiate logits processors
944
+ logits_processor = LogitsProcessorList(
945
+ [
946
+ MinLengthLogitsProcessor(1, eos_token_id=100007),
947
+ ]
948
+ )
949
+ # instantiate logits processors
950
+ logits_warper = LogitsProcessorList(
951
+ [
952
+ TopPLogitsWarper(top_p),
953
+ TopKLogitsWarper(topk),
954
+ TemperatureLogitsWarper(temperature),
955
+
956
+ ]
957
+ )
958
+
959
+ stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=input_length + max_gen_len)])
960
+ out = self.sample(
961
+ tokens,
962
+ logits_processor=logits_processor,
963
+ logits_warper=logits_warper,
964
+ stopping_criteria=stopping_criteria,
965
+ return_dict_in_generate=True,
966
+ output_scores=True,
967
+ )
968
+
969
+
970
+ # print(out)
971
+ out_ids = out["sequences"][0][input_length:].cpu().numpy()
972
+
973
+ out_scores = out["scores"]
974
+
975
+ out_scores = torch.cat(out_scores, dim=0)
976
+ out_scores = torch.nn.functional.softmax(out_scores, dim=-1).cpu().numpy()
977
+
978
+ probs = []
979
+ for i in range(len(out_ids)):
980
+ probs.append(float(out_scores[i][out_ids[i]]))
981
+
982
+ # print(f"probs is {probs}")
983
+
984
+ convert_tokens = []
985
+ for t in out_ids:
986
+ if t == 100006:
987
+ convert_tokens.append("[CLS]")
988
+ else :
989
+ convert_tokens.append(id2word.get(t, "[unkonwn_token]"))
990
+
991
+ out_text = tokenizer.decode(out_ids.tolist())
992
+
993
+
994
+ out = out_text
995
+
996
+ if "###" in out:
997
+ special_index = out.index("###")
998
+ out = out[: special_index]
999
+ token_length = len(tokenizer.encode_plus(out)["input_ids"])
1000
+ convert_tokens = convert_tokens[:token_length]
1001
+ probs = probs[:token_length]
1002
+
1003
+ if "[UNK]" in out:
1004
+ special_index = out.index("[UNK]")
1005
+ out = out[:special_index]
1006
+ token_length = len(tokenizer.encode_plus(out)["input_ids"])
1007
+ convert_tokens = convert_tokens[:token_length]
1008
+ probs = probs[:token_length]
1009
+
1010
+ if "</s>" in out:
1011
+ special_index = out.index("</s>")
1012
+ out = out[: special_index]
1013
+ token_length = len(tokenizer.encode_plus(out)["input_ids"])
1014
+ convert_tokens = convert_tokens[:token_length]
1015
+ probs = probs[:token_length]
1016
+
1017
+ if len(out) > 0 and out[0] == " ":
1018
+ out = out[1:]
1019
+
1020
+ convert_tokens = convert_tokens[1:]
1021
+ probs = probs[1:]
1022
+ return out
1023
+
1024
+ @add_start_docstrings(
1025
+ """
1026
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1027
+
1028
+ [`AquilaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1029
+ (e.g. GPT-2) do.
1030
+
1031
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1032
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1033
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1034
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1035
+ each row of the batch).
1036
+ """,
1037
+ AQUILA_START_DOCSTRING,
1038
+ )
1039
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->AQUILA,Llama->Aquila
1040
+ class AquilaForSequenceClassification(AquilaPreTrainedModel):
1041
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
1042
+
1043
+ def __init__(self, config):
1044
+ super().__init__(config)
1045
+ self.num_labels = config.num_labels
1046
+ self.model = AquilaModel(config)
1047
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1048
+
1049
+ # Initialize weights and apply final processing
1050
+ self.post_init()
1051
+
1052
+ def get_input_embeddings(self):
1053
+ return self.model.embed_tokens
1054
+
1055
+ def set_input_embeddings(self, value):
1056
+ self.model.embed_tokens = value
1057
+
1058
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
1059
+ def forward(
1060
+ self,
1061
+ input_ids: torch.LongTensor = None,
1062
+ attention_mask: Optional[torch.Tensor] = None,
1063
+ position_ids: Optional[torch.LongTensor] = None,
1064
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1065
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1066
+ labels: Optional[torch.LongTensor] = None,
1067
+ use_cache: Optional[bool] = None,
1068
+ output_attentions: Optional[bool] = None,
1069
+ output_hidden_states: Optional[bool] = None,
1070
+ return_dict: Optional[bool] = None,
1071
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1072
+ r"""
1073
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1074
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1075
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1076
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1077
+ """
1078
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1079
+
1080
+ transformer_outputs = self.model(
1081
+ input_ids,
1082
+ attention_mask=attention_mask,
1083
+ position_ids=position_ids,
1084
+ past_key_values=past_key_values,
1085
+ inputs_embeds=inputs_embeds,
1086
+ use_cache=use_cache,
1087
+ output_attentions=output_attentions,
1088
+ output_hidden_states=output_hidden_states,
1089
+ return_dict=return_dict,
1090
+ )
1091
+ hidden_states = transformer_outputs[0]
1092
+ logits = self.score(hidden_states)
1093
+
1094
+ if input_ids is not None:
1095
+ batch_size = input_ids.shape[0]
1096
+ else:
1097
+ batch_size = inputs_embeds.shape[0]
1098
+
1099
+ if self.config.pad_token_id is None and batch_size != 1:
1100
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1101
+ if self.config.pad_token_id is None:
1102
+ sequence_lengths = -1
1103
+ else:
1104
+ if input_ids is not None:
1105
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
1106
+ logits.device
1107
+ )
1108
+ else:
1109
+ sequence_lengths = -1
1110
+
1111
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1112
+
1113
+ loss = None
1114
+ if labels is not None:
1115
+ labels = labels.to(logits.device)
1116
+ if self.config.problem_type is None:
1117
+ if self.num_labels == 1:
1118
+ self.config.problem_type = "regression"
1119
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1120
+ self.config.problem_type = "single_label_classification"
1121
+ else:
1122
+ self.config.problem_type = "multi_label_classification"
1123
+
1124
+ if self.config.problem_type == "regression":
1125
+ loss_fct = MSELoss()
1126
+ if self.num_labels == 1:
1127
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1128
+ else:
1129
+ loss = loss_fct(pooled_logits, labels)
1130
+ elif self.config.problem_type == "single_label_classification":
1131
+ loss_fct = CrossEntropyLoss()
1132
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1133
+ elif self.config.problem_type == "multi_label_classification":
1134
+ loss_fct = BCEWithLogitsLoss()
1135
+ loss = loss_fct(pooled_logits, labels)
1136
+ if not return_dict:
1137
+ output = (pooled_logits,) + transformer_outputs[1:]
1138
+ return ((loss,) + output) if loss is not None else output
1139
+
1140
+ return SequenceClassifierOutputWithPast(
1141
+ loss=loss,
1142
+ logits=pooled_logits,
1143
+ past_key_values=transformer_outputs.past_key_values,
1144
+ hidden_states=transformer_outputs.hidden_states,
1145
+ attentions=transformer_outputs.attentions,
1146
+ )
output-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29d2e8f22a66d43b3c1579e40a10a9eb3b6c24dad9f38105d5dc3e1d0140a200
3
+ size 8589228344
output-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4d723221483068b8ed345c13592cae6eef4d0955aa2c086ffc56ebb4726ae53
3
+ size 8582801640
output-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67f8623be099d694a23363d581c576fd63a63cdd5194f70e0ae8118a8472aade
3
+ size 5687355392
predict.py ADDED
@@ -0,0 +1,475 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copied from https://github.com/lm-sys/FastChat.
3
+ Later we will contribute our changes into it.
4
+ """
5
+ import dataclasses
6
+ from enum import auto, IntEnum
7
+ from typing import List, Any, Dict
8
+ import math
9
+ from typing import List, Optional, Tuple, Union
10
+ import random
11
+ import numpy as np
12
+
13
+ import torch
14
+ import torch.utils.checkpoint
15
+ from torch import nn
16
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
17
+
18
+ from transformers.activations import ACT2FN
19
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
20
+ from transformers.modeling_utils import PreTrainedModel
21
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
22
+ from transformers import (
23
+ LogitsProcessorList,
24
+ MinLengthLogitsProcessor,
25
+ TopKLogitsWarper,
26
+ TemperatureLogitsWarper,
27
+ TopPLogitsWarper,
28
+ StoppingCriteriaList,
29
+ MaxLengthCriteria,
30
+ BitsAndBytesConfig,
31
+ )
32
+
33
+
34
+
35
+ class SeparatorStyle(IntEnum):
36
+ """Separator styles."""
37
+
38
+ ADD_COLON_SINGLE = auto()
39
+ ADD_COLON_TWO = auto()
40
+ ADD_COLON_SPACE_SINGLE = auto()
41
+ NO_COLON_SINGLE = auto()
42
+ NO_COLON_TWO = auto()
43
+ ADD_NEW_LINE_SINGLE = auto()
44
+
45
+
46
+ @dataclasses.dataclass
47
+ class Conversation:
48
+ """A class that manages prompt templates and keeps all conversation history."""
49
+
50
+ # The name of this template
51
+ name: str
52
+ # The template of the system prompt
53
+ system_template: str = "{system_message}"
54
+ # The system message
55
+ system_message: str = ""
56
+ # The names of two roles
57
+ roles: List[str] = (("USER", "ASSISTANT"),)
58
+ # All messages. Each item is (role, message).
59
+ messages: List[List[str]] = ()
60
+ # The number of few shot examples
61
+ offset: int = 0
62
+ # The separator style and configurations
63
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
64
+ sep: str = "\n"
65
+ sep2: str = None
66
+ # Stop criteria (the default one is EOS token)
67
+ stop_str: str = None
68
+ # Stops generation if meeting any token in this list
69
+ stop_token_ids: List[int] = None
70
+
71
+ def get_prompt(self) -> str:
72
+ """Get the prompt for generation."""
73
+ system_prompt = self.system_template.format(system_message=self.system_message)
74
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
75
+ ret = system_prompt + self.sep
76
+ for role, message in self.messages:
77
+ if message:
78
+ ret += role + ": " + message + self.sep
79
+ else:
80
+ ret += role + ":"
81
+ return ret
82
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
83
+ seps = [self.sep, self.sep2]
84
+ ret = system_prompt + seps[0]
85
+ for i, (role, message) in enumerate(self.messages):
86
+ if message:
87
+ ret += role + ": " + message + seps[i % 2]
88
+ else:
89
+ ret += role + ":"
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
92
+ ret = system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + ": " + message + self.sep
96
+ else:
97
+ ret += role + ": " # must be end with a space
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
100
+ ret = "" if system_prompt == "" else system_prompt + self.sep
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + "\n" + message + self.sep
104
+ else:
105
+ ret += role + "\n"
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
108
+ ret = system_prompt
109
+ for role, message in self.messages:
110
+ if message:
111
+ ret += role + message + self.sep
112
+ else:
113
+ ret += role
114
+ return ret
115
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
116
+ seps = [self.sep, self.sep2]
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += role + message + seps[i % 2]
121
+ else:
122
+ ret += role
123
+ return ret
124
+
125
+ def set_system_message(self, system_message: str):
126
+ """Set the system message."""
127
+ self.system_message = system_message
128
+
129
+ def append_message(self, role: str, message: str):
130
+ """Append a new message."""
131
+ self.messages.append([role, message])
132
+
133
+ def update_last_message(self, message: str):
134
+ """Update the last output.
135
+
136
+ The last message is typically set to be None when constructing the prompt,
137
+ so we need to update it in-place after getting the response from a model.
138
+ """
139
+ self.messages[-1][1] = message
140
+
141
+ def copy(self):
142
+ return Conversation(
143
+ name=self.name,
144
+ system_template=self.system_template,
145
+ system_message=self.system_message,
146
+ roles=self.roles,
147
+ messages=[[x, y] for x, y in self.messages],
148
+ offset=self.offset,
149
+ sep_style=self.sep_style,
150
+ sep=self.sep,
151
+ sep2=self.sep2,
152
+ stop_str=self.stop_str,
153
+ stop_token_ids=self.stop_token_ids,
154
+ )
155
+
156
+ def dict(self):
157
+ return {
158
+ "template_name": self.name,
159
+ "system_message": self.system_message,
160
+ "roles": self.roles,
161
+ "messages": self.messages,
162
+ "offset": self.offset,
163
+ }
164
+
165
+
166
+ # A global registry for all conversation templates
167
+ conv_templates: Dict[str, Conversation] = {}
168
+
169
+
170
+ def register_conv_template(template: Conversation, override: bool = False):
171
+ """Register a new conversation template."""
172
+ if not override:
173
+ assert (
174
+ template.name not in conv_templates
175
+ ), f"{template.name} has been registered."
176
+
177
+ conv_templates[template.name] = template
178
+
179
+
180
+ def get_conv_template(name: str) -> Conversation:
181
+ """Get a conversation template."""
182
+ return conv_templates[name].copy()
183
+
184
+ def get_conversation_template(model_path: str) -> Conversation:
185
+ """Get the default conversation template."""
186
+ if "aquila-v1" in model_path:
187
+ return get_conv_template("aquila-v1")
188
+ elif "aquila-v2" in model_path:
189
+ return get_conv_template("aquila-v2")
190
+ elif "aquila-chat" in model_path:
191
+ return get_conv_template("aquila-chat")
192
+ elif "aquila-legacy" in model_path:
193
+ return get_conv_template("aquila-legacy")
194
+ else:
195
+ return get_conv_template("aquila")
196
+
197
+ # AquilaChat default template
198
+ # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
199
+ register_conv_template(
200
+ Conversation(
201
+ name="aquila-chat",
202
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
203
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
204
+ roles=("Human", "Assistant", "System"),
205
+ messages=(),
206
+ offset=0,
207
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
208
+ sep="###",
209
+ sep2="",
210
+ stop_str=["###", "</s>", "[UNK]"],
211
+ )
212
+ )
213
+
214
+ register_conv_template(
215
+ Conversation(
216
+ name="aquila-legacy",
217
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
218
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
219
+ roles=("### Human: ", "### Assistant: ", "System"),
220
+ messages=(),
221
+ offset=0,
222
+ sep_style=SeparatorStyle.NO_COLON_TWO,
223
+ sep="\n",
224
+ sep2="</s>",
225
+ stop_str=["</s>", "[UNK]"],
226
+ )
227
+ )
228
+
229
+ register_conv_template(
230
+ Conversation(
231
+ name="aquila",
232
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
233
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
234
+ roles=("Human", "Assistant", "System"),
235
+ messages=(),
236
+ offset=0,
237
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
238
+ sep="###",
239
+ sep2="</s>",
240
+ stop_str=["</s>", "[UNK]"],
241
+ )
242
+ )
243
+
244
+ register_conv_template(
245
+ Conversation(
246
+ name="aquila-v1",
247
+ roles=("<|startofpiece|>", "<|endofpiece|>", ""),
248
+ messages=(),
249
+ offset=0,
250
+ sep_style=SeparatorStyle.NO_COLON_TWO,
251
+ sep="",
252
+ sep2="</s>",
253
+ stop_str=["</s>", "<|endoftext|>"],
254
+ )
255
+ )
256
+
257
+ register_conv_template(
258
+ Conversation(
259
+ name="aquila-v2",
260
+ system_message="A chat between a curious human and an artificial intelligence assistant. "
261
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
262
+ roles=("<|startofpiece|>", "<|endofpiece|>", ""),
263
+ messages=(),
264
+ offset=0,
265
+ sep_style=SeparatorStyle.NO_COLON_TWO,
266
+ sep="",
267
+ sep2="</s>",
268
+ stop_str=["</s>", "<|endoftext|>", "<|startofpiece|>", "<|endofpiece|>"],
269
+ )
270
+ )
271
+
272
+
273
+ if __name__ == "__main__":
274
+ print("aquila template:")
275
+ conv = get_conv_template("aquila")
276
+ conv.append_message(conv.roles[0], "Hello!")
277
+ conv.append_message(conv.roles[1], "Hi!")
278
+ conv.append_message(conv.roles[0], "How are you?")
279
+ conv.append_message(conv.roles[1], None)
280
+ print(conv.get_prompt())
281
+
282
+ print("\n")
283
+
284
+ print("aquila-chat template:")
285
+ conv = get_conv_template("aquila-chat")
286
+ conv.append_message(conv.roles[0], "Hello!")
287
+ conv.append_message(conv.roles[1], "Hi!")
288
+ conv.append_message(conv.roles[0], "How are you?")
289
+ conv.append_message(conv.roles[1], None)
290
+ print(conv.get_prompt())
291
+
292
+ print("\n")
293
+
294
+ print("aquila-v1 template:")
295
+ conv = get_conv_template("aquila-v1")
296
+ conv.append_message(conv.roles[0], "Hello!")
297
+ conv.append_message(conv.roles[1], "Hi!")
298
+ conv.append_message(conv.roles[0], "How are you?")
299
+ conv.append_message(conv.roles[1], None)
300
+ print(conv.get_prompt())
301
+
302
+ print("\n")
303
+
304
+ print("aquila-legacy template:")
305
+ conv = get_conv_template("aquila-legacy")
306
+ conv.append_message(conv.roles[0], "Hello!")
307
+ conv.append_message(conv.roles[1], "Hi!")
308
+ conv.append_message(conv.roles[0], "How are you?")
309
+ conv.append_message(conv.roles[1], None)
310
+ print(conv.get_prompt())
311
+
312
+ print("\n")
313
+
314
+ print("aquila-v2 template:")
315
+ conv = get_conv_template("aquila-v2")
316
+ conv.append_message(conv.roles[0], "Hello!")
317
+ conv.append_message(conv.roles[1], "Hi!")
318
+ conv.append_message(conv.roles[0], "How are you?")
319
+ conv.append_message(conv.roles[1], None)
320
+ print(conv.get_prompt())
321
+
322
+ print("\n")
323
+
324
+
325
+ def set_random_seed(seed):
326
+ """Set random seed for reproducability."""
327
+ if seed is not None and seed > 0:
328
+ random.seed(seed)
329
+ np.random.seed(seed)
330
+ torch.manual_seed(seed)
331
+
332
+ def covert_prompt_to_input_ids_with_history(text, history, tokenizer, max_token, convo_template="aquila-chat"):
333
+ # aquila-chat as default
334
+ conv = get_conv_template(convo_template)
335
+
336
+ conv.append_message(conv.roles[1], None)
337
+ conv.append_message(conv.roles[0], text)
338
+
339
+ example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
340
+
341
+ if history is None or not isinstance(history, list):
342
+ history = []
343
+
344
+ while(len(history) > 0 and (len(example) < max_token)):
345
+ tmp = history.pop()
346
+ if tmp[0] == 'ASSISTANT':
347
+ conv.append_message(conv.roles[1], tmp[1])
348
+ else:
349
+ conv.append_message(conv.roles[0], tmp[1])
350
+ example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
351
+
352
+ if len(example) >= max_token:
353
+ conv.messages.pop()
354
+ conv.messages = conv.messages[::-1]
355
+ print('model in:', conv.get_prompt())
356
+ example = tokenizer.encode_plus(f"{conv.get_prompt()} ", None, max_length=None)['input_ids']
357
+
358
+ return example
359
+
360
+ def predict(model, text, tokenizer=None,
361
+ max_gen_len=200, top_p=0.9,
362
+ seed=123, topk=15,
363
+ temperature=1.0,
364
+ sft=True, convo_template = "",
365
+ device = "cuda",
366
+ model_name="AquilaChat2-7B",
367
+ history=None,
368
+ **kwargs):
369
+
370
+ vocab = tokenizer.get_vocab()
371
+
372
+ id2word = {v:k for k, v in vocab.items()}
373
+
374
+
375
+ template_map = {"AquilaChat2-7B": "aquila-v1",
376
+ "AquilaChat2-34B": "aquila-legacy",
377
+ "AquilaChat2-70B-Expr": "aquila-v2",
378
+ "AquilaChat2-7B-16K": "aquila",
379
+ "AquilaChat2-34B-16K": "aquila"}
380
+ if not convo_template:
381
+ convo_template=template_map.get(model_name, "aquila-chat")
382
+
383
+ set_random_seed(seed)
384
+ if temperature == 0:
385
+ topk = 1
386
+ temperature = 1.0
387
+ if sft:
388
+ tokens = covert_prompt_to_input_ids_with_history(text, history=history, tokenizer=tokenizer, max_token=20480, convo_template=convo_template)
389
+ tokens = torch.tensor(tokens)[None,].to(device)
390
+ else :
391
+ tokens = tokenizer.encode_plus(text)["input_ids"]
392
+ print(tokenizer.decode(tokens))
393
+ tokens = torch.tensor(tokens)[None,].to(device)
394
+ input_length = len(tokens[0])
395
+ with torch.no_grad():
396
+
397
+ # instantiate logits processors
398
+ logits_processor = LogitsProcessorList(
399
+ [
400
+ MinLengthLogitsProcessor(1, eos_token_id=100007),
401
+ ]
402
+ )
403
+ # instantiate logits processors
404
+ logits_warper = LogitsProcessorList(
405
+ [
406
+ TopPLogitsWarper(top_p),
407
+ TopKLogitsWarper(topk),
408
+ TemperatureLogitsWarper(temperature),
409
+
410
+ ]
411
+ )
412
+
413
+ stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=input_length + max_gen_len)])
414
+ out = model.sample(
415
+ tokens,
416
+ logits_processor=logits_processor,
417
+ logits_warper=logits_warper,
418
+ stopping_criteria=stopping_criteria,
419
+ return_dict_in_generate=True,
420
+ output_scores=True,
421
+ )
422
+
423
+
424
+ # print(out)
425
+ out_ids = out["sequences"][0][input_length:].cpu().numpy()
426
+
427
+ out_scores = out["scores"]
428
+
429
+ out_scores = torch.cat(out_scores, dim=0)
430
+ out_scores = torch.nn.functional.softmax(out_scores, dim=-1).cpu().numpy()
431
+
432
+ probs = []
433
+ for i in range(len(out_ids)):
434
+ probs.append(float(out_scores[i][out_ids[i]]))
435
+
436
+ # print(f"probs is {probs}")
437
+
438
+ convert_tokens = []
439
+ for t in out_ids:
440
+ if t == 100006:
441
+ convert_tokens.append("[CLS]")
442
+ else :
443
+ convert_tokens.append(id2word.get(t, "[unkonwn_token]"))
444
+
445
+ out_text = tokenizer.decode(out_ids.tolist())
446
+
447
+
448
+ out = out_text
449
+
450
+ if "[UNK]" in out:
451
+ special_index = out.index("[UNK]")
452
+ out = out[:special_index]
453
+ token_length = len(tokenizer.encode_plus(out)["input_ids"])
454
+ convert_tokens = convert_tokens[:token_length]
455
+ probs = probs[:token_length]
456
+
457
+ if "</s>" in out:
458
+ special_index = out.index("</s>")
459
+ out = out[: special_index]
460
+ token_length = len(tokenizer.encode_plus(out)["input_ids"])
461
+ convert_tokens = convert_tokens[:token_length]
462
+ probs = probs[:token_length]
463
+
464
+ if len(out) > 0 and out[0] == " ":
465
+ out = out[1:]
466
+
467
+ convert_tokens = convert_tokens[1:]
468
+ probs = probs[1:]
469
+
470
+ if isinstance(history, list):
471
+ # Update history
472
+ history.insert(0, ('ASSISTANT', out))
473
+ history.insert(0, ('USER', text))
474
+
475
+ return out
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,810 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 140181803008
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00082-of-00082.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00082.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00002-of-00082.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00002-of-00082.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00002-of-00082.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00002-of-00082.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00002-of-00082.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00082.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00082.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00082.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00082.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00082.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00003-of-00082.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00003-of-00082.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00003-of-00082.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00003-of-00082.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00003-of-00082.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00082.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00002-of-00082.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00082.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00082.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00082.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00012-of-00082.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00012-of-00082.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00012-of-00082.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00012-of-00082.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00012-of-00082.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00011-of-00082.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00011-of-00082.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00011-of-00082.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00082.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00011-of-00082.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00013-of-00082.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00013-of-00082.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00013-of-00082.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00013-of-00082.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00013-of-00082.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00012-of-00082.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00012-of-00082.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00012-of-00082.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00082.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00012-of-00082.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00014-of-00082.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00014-of-00082.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00014-of-00082.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00014-of-00082.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00014-of-00082.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00013-of-00082.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00013-of-00082.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00013-of-00082.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00082.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00013-of-00082.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00015-of-00082.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00015-of-00082.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00015-of-00082.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00015-of-00082.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00015-of-00082.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00014-of-00082.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00014-of-00082.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00014-of-00082.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00082.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00014-of-00082.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00016-of-00082.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00016-of-00082.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00016-of-00082.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00016-of-00082.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00016-of-00082.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00015-of-00082.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00015-of-00082.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00015-of-00082.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00082.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00015-of-00082.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00017-of-00082.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00017-of-00082.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00017-of-00082.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00017-of-00082.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00017-of-00082.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00016-of-00082.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00016-of-00082.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00016-of-00082.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00082.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00016-of-00082.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00018-of-00082.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00018-of-00082.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00018-of-00082.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00018-of-00082.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00018-of-00082.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00017-of-00082.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00017-of-00082.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00017-of-00082.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00082.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00017-of-00082.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00019-of-00082.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00019-of-00082.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00019-of-00082.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00019-of-00082.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00019-of-00082.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00018-of-00082.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00018-of-00082.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00018-of-00082.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00082.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00018-of-00082.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00020-of-00082.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00020-of-00082.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00020-of-00082.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00020-of-00082.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00020-of-00082.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00019-of-00082.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00019-of-00082.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00019-of-00082.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00082.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00019-of-00082.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00021-of-00082.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00021-of-00082.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00021-of-00082.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00021-of-00082.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00021-of-00082.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00020-of-00082.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00020-of-00082.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00020-of-00082.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00082.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00020-of-00082.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00004-of-00082.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00004-of-00082.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00004-of-00082.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00004-of-00082.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00004-of-00082.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00003-of-00082.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00003-of-00082.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00003-of-00082.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00082.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00003-of-00082.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00022-of-00082.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00022-of-00082.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00022-of-00082.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00022-of-00082.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00022-of-00082.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00021-of-00082.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00021-of-00082.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00021-of-00082.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00082.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00021-of-00082.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00023-of-00082.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00023-of-00082.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00023-of-00082.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00023-of-00082.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00023-of-00082.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00022-of-00082.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00022-of-00082.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00022-of-00082.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00082.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00022-of-00082.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00024-of-00082.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00024-of-00082.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00024-of-00082.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00024-of-00082.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00024-of-00082.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00023-of-00082.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00023-of-00082.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00023-of-00082.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00082.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00023-of-00082.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00025-of-00082.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00025-of-00082.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00025-of-00082.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00025-of-00082.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00025-of-00082.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00024-of-00082.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00024-of-00082.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00024-of-00082.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00082.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00024-of-00082.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00026-of-00082.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00026-of-00082.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00026-of-00082.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00026-of-00082.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00026-of-00082.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00025-of-00082.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00025-of-00082.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00025-of-00082.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00082.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00025-of-00082.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00027-of-00082.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00027-of-00082.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00027-of-00082.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00027-of-00082.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00027-of-00082.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00026-of-00082.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00026-of-00082.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00026-of-00082.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00082.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00026-of-00082.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00028-of-00082.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00028-of-00082.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00028-of-00082.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00028-of-00082.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00028-of-00082.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00027-of-00082.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00027-of-00082.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00027-of-00082.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00027-of-00082.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00027-of-00082.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00029-of-00082.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00029-of-00082.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00029-of-00082.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00029-of-00082.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00029-of-00082.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00028-of-00082.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00028-of-00082.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00028-of-00082.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00028-of-00082.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00028-of-00082.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00030-of-00082.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00030-of-00082.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00030-of-00082.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00030-of-00082.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00030-of-00082.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00029-of-00082.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00029-of-00082.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00029-of-00082.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00029-of-00082.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00029-of-00082.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00031-of-00082.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00031-of-00082.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00031-of-00082.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00031-of-00082.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00031-of-00082.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00030-of-00082.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00030-of-00082.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00030-of-00082.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00030-of-00082.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00030-of-00082.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00005-of-00082.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00005-of-00082.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00005-of-00082.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00005-of-00082.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00005-of-00082.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00004-of-00082.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00004-of-00082.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00004-of-00082.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00082.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00004-of-00082.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00032-of-00082.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00032-of-00082.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00032-of-00082.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00032-of-00082.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00032-of-00082.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00031-of-00082.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00031-of-00082.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00031-of-00082.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00031-of-00082.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00031-of-00082.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00033-of-00082.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00033-of-00082.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00033-of-00082.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00033-of-00082.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00033-of-00082.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00032-of-00082.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00032-of-00082.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00032-of-00082.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00032-of-00082.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00032-of-00082.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00034-of-00082.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00034-of-00082.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00034-of-00082.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00034-of-00082.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00034-of-00082.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00033-of-00082.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00033-of-00082.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00033-of-00082.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00033-of-00082.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00033-of-00082.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00035-of-00082.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00035-of-00082.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00035-of-00082.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00035-of-00082.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00035-of-00082.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00034-of-00082.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00034-of-00082.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00034-of-00082.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00034-of-00082.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00034-of-00082.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00036-of-00082.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00036-of-00082.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00036-of-00082.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00036-of-00082.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00036-of-00082.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00035-of-00082.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00035-of-00082.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00035-of-00082.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00035-of-00082.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00035-of-00082.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00037-of-00082.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00037-of-00082.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00037-of-00082.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00037-of-00082.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00037-of-00082.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00036-of-00082.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00036-of-00082.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00036-of-00082.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00036-of-00082.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00036-of-00082.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00038-of-00082.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00038-of-00082.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00038-of-00082.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00038-of-00082.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00038-of-00082.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00037-of-00082.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00037-of-00082.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00037-of-00082.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00037-of-00082.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00037-of-00082.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00039-of-00082.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00039-of-00082.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00039-of-00082.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00039-of-00082.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00039-of-00082.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00038-of-00082.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00038-of-00082.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00038-of-00082.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00038-of-00082.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00038-of-00082.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00040-of-00082.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00040-of-00082.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00040-of-00082.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00040-of-00082.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00040-of-00082.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00039-of-00082.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00039-of-00082.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00039-of-00082.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00039-of-00082.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00039-of-00082.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00041-of-00082.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00041-of-00082.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00041-of-00082.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00041-of-00082.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00041-of-00082.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00040-of-00082.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00040-of-00082.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00040-of-00082.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00040-of-00082.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00040-of-00082.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00006-of-00082.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00006-of-00082.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00006-of-00082.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00006-of-00082.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00006-of-00082.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00005-of-00082.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00005-of-00082.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00005-of-00082.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00082.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00005-of-00082.bin",
358
+ "model.layers.40.input_layernorm.weight": "pytorch_model-00042-of-00082.bin",
359
+ "model.layers.40.mlp.down_proj.weight": "pytorch_model-00042-of-00082.bin",
360
+ "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00042-of-00082.bin",
361
+ "model.layers.40.mlp.up_proj.weight": "pytorch_model-00042-of-00082.bin",
362
+ "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00042-of-00082.bin",
363
+ "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00041-of-00082.bin",
364
+ "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00041-of-00082.bin",
365
+ "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00041-of-00082.bin",
366
+ "model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00041-of-00082.bin",
367
+ "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00041-of-00082.bin",
368
+ "model.layers.41.input_layernorm.weight": "pytorch_model-00043-of-00082.bin",
369
+ "model.layers.41.mlp.down_proj.weight": "pytorch_model-00043-of-00082.bin",
370
+ "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00043-of-00082.bin",
371
+ "model.layers.41.mlp.up_proj.weight": "pytorch_model-00043-of-00082.bin",
372
+ "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00043-of-00082.bin",
373
+ "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00042-of-00082.bin",
374
+ "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00042-of-00082.bin",
375
+ "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00042-of-00082.bin",
376
+ "model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00042-of-00082.bin",
377
+ "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00042-of-00082.bin",
378
+ "model.layers.42.input_layernorm.weight": "pytorch_model-00044-of-00082.bin",
379
+ "model.layers.42.mlp.down_proj.weight": "pytorch_model-00044-of-00082.bin",
380
+ "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00044-of-00082.bin",
381
+ "model.layers.42.mlp.up_proj.weight": "pytorch_model-00044-of-00082.bin",
382
+ "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00044-of-00082.bin",
383
+ "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00043-of-00082.bin",
384
+ "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00043-of-00082.bin",
385
+ "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00043-of-00082.bin",
386
+ "model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00043-of-00082.bin",
387
+ "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00043-of-00082.bin",
388
+ "model.layers.43.input_layernorm.weight": "pytorch_model-00045-of-00082.bin",
389
+ "model.layers.43.mlp.down_proj.weight": "pytorch_model-00045-of-00082.bin",
390
+ "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00045-of-00082.bin",
391
+ "model.layers.43.mlp.up_proj.weight": "pytorch_model-00045-of-00082.bin",
392
+ "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00045-of-00082.bin",
393
+ "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00044-of-00082.bin",
394
+ "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00044-of-00082.bin",
395
+ "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00044-of-00082.bin",
396
+ "model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00044-of-00082.bin",
397
+ "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00044-of-00082.bin",
398
+ "model.layers.44.input_layernorm.weight": "pytorch_model-00046-of-00082.bin",
399
+ "model.layers.44.mlp.down_proj.weight": "pytorch_model-00046-of-00082.bin",
400
+ "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00046-of-00082.bin",
401
+ "model.layers.44.mlp.up_proj.weight": "pytorch_model-00046-of-00082.bin",
402
+ "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00046-of-00082.bin",
403
+ "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00045-of-00082.bin",
404
+ "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00045-of-00082.bin",
405
+ "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00045-of-00082.bin",
406
+ "model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00045-of-00082.bin",
407
+ "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00045-of-00082.bin",
408
+ "model.layers.45.input_layernorm.weight": "pytorch_model-00047-of-00082.bin",
409
+ "model.layers.45.mlp.down_proj.weight": "pytorch_model-00047-of-00082.bin",
410
+ "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00047-of-00082.bin",
411
+ "model.layers.45.mlp.up_proj.weight": "pytorch_model-00047-of-00082.bin",
412
+ "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00047-of-00082.bin",
413
+ "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00046-of-00082.bin",
414
+ "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00046-of-00082.bin",
415
+ "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00046-of-00082.bin",
416
+ "model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00046-of-00082.bin",
417
+ "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00046-of-00082.bin",
418
+ "model.layers.46.input_layernorm.weight": "pytorch_model-00048-of-00082.bin",
419
+ "model.layers.46.mlp.down_proj.weight": "pytorch_model-00048-of-00082.bin",
420
+ "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00048-of-00082.bin",
421
+ "model.layers.46.mlp.up_proj.weight": "pytorch_model-00048-of-00082.bin",
422
+ "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00048-of-00082.bin",
423
+ "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00047-of-00082.bin",
424
+ "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00047-of-00082.bin",
425
+ "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00047-of-00082.bin",
426
+ "model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00047-of-00082.bin",
427
+ "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00047-of-00082.bin",
428
+ "model.layers.47.input_layernorm.weight": "pytorch_model-00049-of-00082.bin",
429
+ "model.layers.47.mlp.down_proj.weight": "pytorch_model-00049-of-00082.bin",
430
+ "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00049-of-00082.bin",
431
+ "model.layers.47.mlp.up_proj.weight": "pytorch_model-00049-of-00082.bin",
432
+ "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00049-of-00082.bin",
433
+ "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00048-of-00082.bin",
434
+ "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00048-of-00082.bin",
435
+ "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00048-of-00082.bin",
436
+ "model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00048-of-00082.bin",
437
+ "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00048-of-00082.bin",
438
+ "model.layers.48.input_layernorm.weight": "pytorch_model-00050-of-00082.bin",
439
+ "model.layers.48.mlp.down_proj.weight": "pytorch_model-00050-of-00082.bin",
440
+ "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00050-of-00082.bin",
441
+ "model.layers.48.mlp.up_proj.weight": "pytorch_model-00050-of-00082.bin",
442
+ "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00050-of-00082.bin",
443
+ "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00049-of-00082.bin",
444
+ "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00049-of-00082.bin",
445
+ "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00049-of-00082.bin",
446
+ "model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00049-of-00082.bin",
447
+ "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00049-of-00082.bin",
448
+ "model.layers.49.input_layernorm.weight": "pytorch_model-00051-of-00082.bin",
449
+ "model.layers.49.mlp.down_proj.weight": "pytorch_model-00051-of-00082.bin",
450
+ "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00051-of-00082.bin",
451
+ "model.layers.49.mlp.up_proj.weight": "pytorch_model-00051-of-00082.bin",
452
+ "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00051-of-00082.bin",
453
+ "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00050-of-00082.bin",
454
+ "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00050-of-00082.bin",
455
+ "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00050-of-00082.bin",
456
+ "model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00050-of-00082.bin",
457
+ "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00050-of-00082.bin",
458
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00007-of-00082.bin",
459
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00007-of-00082.bin",
460
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00007-of-00082.bin",
461
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00007-of-00082.bin",
462
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00007-of-00082.bin",
463
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00006-of-00082.bin",
464
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00006-of-00082.bin",
465
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00006-of-00082.bin",
466
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00082.bin",
467
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00006-of-00082.bin",
468
+ "model.layers.50.input_layernorm.weight": "pytorch_model-00052-of-00082.bin",
469
+ "model.layers.50.mlp.down_proj.weight": "pytorch_model-00052-of-00082.bin",
470
+ "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00052-of-00082.bin",
471
+ "model.layers.50.mlp.up_proj.weight": "pytorch_model-00052-of-00082.bin",
472
+ "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00052-of-00082.bin",
473
+ "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00051-of-00082.bin",
474
+ "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00051-of-00082.bin",
475
+ "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00051-of-00082.bin",
476
+ "model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00051-of-00082.bin",
477
+ "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00051-of-00082.bin",
478
+ "model.layers.51.input_layernorm.weight": "pytorch_model-00053-of-00082.bin",
479
+ "model.layers.51.mlp.down_proj.weight": "pytorch_model-00053-of-00082.bin",
480
+ "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00053-of-00082.bin",
481
+ "model.layers.51.mlp.up_proj.weight": "pytorch_model-00053-of-00082.bin",
482
+ "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00053-of-00082.bin",
483
+ "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00052-of-00082.bin",
484
+ "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00052-of-00082.bin",
485
+ "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00052-of-00082.bin",
486
+ "model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00052-of-00082.bin",
487
+ "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00052-of-00082.bin",
488
+ "model.layers.52.input_layernorm.weight": "pytorch_model-00054-of-00082.bin",
489
+ "model.layers.52.mlp.down_proj.weight": "pytorch_model-00054-of-00082.bin",
490
+ "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00054-of-00082.bin",
491
+ "model.layers.52.mlp.up_proj.weight": "pytorch_model-00054-of-00082.bin",
492
+ "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00054-of-00082.bin",
493
+ "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00053-of-00082.bin",
494
+ "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00053-of-00082.bin",
495
+ "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00053-of-00082.bin",
496
+ "model.layers.52.self_attn.rotary_emb.inv_freq": "pytorch_model-00053-of-00082.bin",
497
+ "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00053-of-00082.bin",
498
+ "model.layers.53.input_layernorm.weight": "pytorch_model-00055-of-00082.bin",
499
+ "model.layers.53.mlp.down_proj.weight": "pytorch_model-00055-of-00082.bin",
500
+ "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00055-of-00082.bin",
501
+ "model.layers.53.mlp.up_proj.weight": "pytorch_model-00055-of-00082.bin",
502
+ "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00055-of-00082.bin",
503
+ "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00054-of-00082.bin",
504
+ "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00054-of-00082.bin",
505
+ "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00054-of-00082.bin",
506
+ "model.layers.53.self_attn.rotary_emb.inv_freq": "pytorch_model-00054-of-00082.bin",
507
+ "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00054-of-00082.bin",
508
+ "model.layers.54.input_layernorm.weight": "pytorch_model-00056-of-00082.bin",
509
+ "model.layers.54.mlp.down_proj.weight": "pytorch_model-00056-of-00082.bin",
510
+ "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00056-of-00082.bin",
511
+ "model.layers.54.mlp.up_proj.weight": "pytorch_model-00056-of-00082.bin",
512
+ "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00056-of-00082.bin",
513
+ "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00055-of-00082.bin",
514
+ "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00055-of-00082.bin",
515
+ "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00055-of-00082.bin",
516
+ "model.layers.54.self_attn.rotary_emb.inv_freq": "pytorch_model-00055-of-00082.bin",
517
+ "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00055-of-00082.bin",
518
+ "model.layers.55.input_layernorm.weight": "pytorch_model-00057-of-00082.bin",
519
+ "model.layers.55.mlp.down_proj.weight": "pytorch_model-00057-of-00082.bin",
520
+ "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00057-of-00082.bin",
521
+ "model.layers.55.mlp.up_proj.weight": "pytorch_model-00057-of-00082.bin",
522
+ "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00057-of-00082.bin",
523
+ "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00056-of-00082.bin",
524
+ "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00056-of-00082.bin",
525
+ "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00056-of-00082.bin",
526
+ "model.layers.55.self_attn.rotary_emb.inv_freq": "pytorch_model-00056-of-00082.bin",
527
+ "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00056-of-00082.bin",
528
+ "model.layers.56.input_layernorm.weight": "pytorch_model-00058-of-00082.bin",
529
+ "model.layers.56.mlp.down_proj.weight": "pytorch_model-00058-of-00082.bin",
530
+ "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00058-of-00082.bin",
531
+ "model.layers.56.mlp.up_proj.weight": "pytorch_model-00058-of-00082.bin",
532
+ "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00058-of-00082.bin",
533
+ "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00057-of-00082.bin",
534
+ "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00057-of-00082.bin",
535
+ "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00057-of-00082.bin",
536
+ "model.layers.56.self_attn.rotary_emb.inv_freq": "pytorch_model-00057-of-00082.bin",
537
+ "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00057-of-00082.bin",
538
+ "model.layers.57.input_layernorm.weight": "pytorch_model-00059-of-00082.bin",
539
+ "model.layers.57.mlp.down_proj.weight": "pytorch_model-00059-of-00082.bin",
540
+ "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00059-of-00082.bin",
541
+ "model.layers.57.mlp.up_proj.weight": "pytorch_model-00059-of-00082.bin",
542
+ "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00059-of-00082.bin",
543
+ "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00058-of-00082.bin",
544
+ "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00058-of-00082.bin",
545
+ "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00058-of-00082.bin",
546
+ "model.layers.57.self_attn.rotary_emb.inv_freq": "pytorch_model-00058-of-00082.bin",
547
+ "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00058-of-00082.bin",
548
+ "model.layers.58.input_layernorm.weight": "pytorch_model-00060-of-00082.bin",
549
+ "model.layers.58.mlp.down_proj.weight": "pytorch_model-00060-of-00082.bin",
550
+ "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00060-of-00082.bin",
551
+ "model.layers.58.mlp.up_proj.weight": "pytorch_model-00060-of-00082.bin",
552
+ "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00060-of-00082.bin",
553
+ "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00059-of-00082.bin",
554
+ "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00059-of-00082.bin",
555
+ "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00059-of-00082.bin",
556
+ "model.layers.58.self_attn.rotary_emb.inv_freq": "pytorch_model-00059-of-00082.bin",
557
+ "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00059-of-00082.bin",
558
+ "model.layers.59.input_layernorm.weight": "pytorch_model-00061-of-00082.bin",
559
+ "model.layers.59.mlp.down_proj.weight": "pytorch_model-00061-of-00082.bin",
560
+ "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00061-of-00082.bin",
561
+ "model.layers.59.mlp.up_proj.weight": "pytorch_model-00061-of-00082.bin",
562
+ "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00061-of-00082.bin",
563
+ "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00060-of-00082.bin",
564
+ "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00060-of-00082.bin",
565
+ "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00060-of-00082.bin",
566
+ "model.layers.59.self_attn.rotary_emb.inv_freq": "pytorch_model-00060-of-00082.bin",
567
+ "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00060-of-00082.bin",
568
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00008-of-00082.bin",
569
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00008-of-00082.bin",
570
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00008-of-00082.bin",
571
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00008-of-00082.bin",
572
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00008-of-00082.bin",
573
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00007-of-00082.bin",
574
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00007-of-00082.bin",
575
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00007-of-00082.bin",
576
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00082.bin",
577
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00007-of-00082.bin",
578
+ "model.layers.60.input_layernorm.weight": "pytorch_model-00062-of-00082.bin",
579
+ "model.layers.60.mlp.down_proj.weight": "pytorch_model-00062-of-00082.bin",
580
+ "model.layers.60.mlp.gate_proj.weight": "pytorch_model-00062-of-00082.bin",
581
+ "model.layers.60.mlp.up_proj.weight": "pytorch_model-00062-of-00082.bin",
582
+ "model.layers.60.post_attention_layernorm.weight": "pytorch_model-00062-of-00082.bin",
583
+ "model.layers.60.self_attn.k_proj.weight": "pytorch_model-00061-of-00082.bin",
584
+ "model.layers.60.self_attn.o_proj.weight": "pytorch_model-00061-of-00082.bin",
585
+ "model.layers.60.self_attn.q_proj.weight": "pytorch_model-00061-of-00082.bin",
586
+ "model.layers.60.self_attn.rotary_emb.inv_freq": "pytorch_model-00061-of-00082.bin",
587
+ "model.layers.60.self_attn.v_proj.weight": "pytorch_model-00061-of-00082.bin",
588
+ "model.layers.61.input_layernorm.weight": "pytorch_model-00063-of-00082.bin",
589
+ "model.layers.61.mlp.down_proj.weight": "pytorch_model-00063-of-00082.bin",
590
+ "model.layers.61.mlp.gate_proj.weight": "pytorch_model-00063-of-00082.bin",
591
+ "model.layers.61.mlp.up_proj.weight": "pytorch_model-00063-of-00082.bin",
592
+ "model.layers.61.post_attention_layernorm.weight": "pytorch_model-00063-of-00082.bin",
593
+ "model.layers.61.self_attn.k_proj.weight": "pytorch_model-00062-of-00082.bin",
594
+ "model.layers.61.self_attn.o_proj.weight": "pytorch_model-00062-of-00082.bin",
595
+ "model.layers.61.self_attn.q_proj.weight": "pytorch_model-00062-of-00082.bin",
596
+ "model.layers.61.self_attn.rotary_emb.inv_freq": "pytorch_model-00062-of-00082.bin",
597
+ "model.layers.61.self_attn.v_proj.weight": "pytorch_model-00062-of-00082.bin",
598
+ "model.layers.62.input_layernorm.weight": "pytorch_model-00064-of-00082.bin",
599
+ "model.layers.62.mlp.down_proj.weight": "pytorch_model-00064-of-00082.bin",
600
+ "model.layers.62.mlp.gate_proj.weight": "pytorch_model-00064-of-00082.bin",
601
+ "model.layers.62.mlp.up_proj.weight": "pytorch_model-00064-of-00082.bin",
602
+ "model.layers.62.post_attention_layernorm.weight": "pytorch_model-00064-of-00082.bin",
603
+ "model.layers.62.self_attn.k_proj.weight": "pytorch_model-00063-of-00082.bin",
604
+ "model.layers.62.self_attn.o_proj.weight": "pytorch_model-00063-of-00082.bin",
605
+ "model.layers.62.self_attn.q_proj.weight": "pytorch_model-00063-of-00082.bin",
606
+ "model.layers.62.self_attn.rotary_emb.inv_freq": "pytorch_model-00063-of-00082.bin",
607
+ "model.layers.62.self_attn.v_proj.weight": "pytorch_model-00063-of-00082.bin",
608
+ "model.layers.63.input_layernorm.weight": "pytorch_model-00065-of-00082.bin",
609
+ "model.layers.63.mlp.down_proj.weight": "pytorch_model-00065-of-00082.bin",
610
+ "model.layers.63.mlp.gate_proj.weight": "pytorch_model-00065-of-00082.bin",
611
+ "model.layers.63.mlp.up_proj.weight": "pytorch_model-00065-of-00082.bin",
612
+ "model.layers.63.post_attention_layernorm.weight": "pytorch_model-00065-of-00082.bin",
613
+ "model.layers.63.self_attn.k_proj.weight": "pytorch_model-00064-of-00082.bin",
614
+ "model.layers.63.self_attn.o_proj.weight": "pytorch_model-00064-of-00082.bin",
615
+ "model.layers.63.self_attn.q_proj.weight": "pytorch_model-00064-of-00082.bin",
616
+ "model.layers.63.self_attn.rotary_emb.inv_freq": "pytorch_model-00064-of-00082.bin",
617
+ "model.layers.63.self_attn.v_proj.weight": "pytorch_model-00064-of-00082.bin",
618
+ "model.layers.64.input_layernorm.weight": "pytorch_model-00066-of-00082.bin",
619
+ "model.layers.64.mlp.down_proj.weight": "pytorch_model-00066-of-00082.bin",
620
+ "model.layers.64.mlp.gate_proj.weight": "pytorch_model-00066-of-00082.bin",
621
+ "model.layers.64.mlp.up_proj.weight": "pytorch_model-00066-of-00082.bin",
622
+ "model.layers.64.post_attention_layernorm.weight": "pytorch_model-00066-of-00082.bin",
623
+ "model.layers.64.self_attn.k_proj.weight": "pytorch_model-00065-of-00082.bin",
624
+ "model.layers.64.self_attn.o_proj.weight": "pytorch_model-00065-of-00082.bin",
625
+ "model.layers.64.self_attn.q_proj.weight": "pytorch_model-00065-of-00082.bin",
626
+ "model.layers.64.self_attn.rotary_emb.inv_freq": "pytorch_model-00065-of-00082.bin",
627
+ "model.layers.64.self_attn.v_proj.weight": "pytorch_model-00065-of-00082.bin",
628
+ "model.layers.65.input_layernorm.weight": "pytorch_model-00067-of-00082.bin",
629
+ "model.layers.65.mlp.down_proj.weight": "pytorch_model-00067-of-00082.bin",
630
+ "model.layers.65.mlp.gate_proj.weight": "pytorch_model-00067-of-00082.bin",
631
+ "model.layers.65.mlp.up_proj.weight": "pytorch_model-00067-of-00082.bin",
632
+ "model.layers.65.post_attention_layernorm.weight": "pytorch_model-00067-of-00082.bin",
633
+ "model.layers.65.self_attn.k_proj.weight": "pytorch_model-00066-of-00082.bin",
634
+ "model.layers.65.self_attn.o_proj.weight": "pytorch_model-00066-of-00082.bin",
635
+ "model.layers.65.self_attn.q_proj.weight": "pytorch_model-00066-of-00082.bin",
636
+ "model.layers.65.self_attn.rotary_emb.inv_freq": "pytorch_model-00066-of-00082.bin",
637
+ "model.layers.65.self_attn.v_proj.weight": "pytorch_model-00066-of-00082.bin",
638
+ "model.layers.66.input_layernorm.weight": "pytorch_model-00068-of-00082.bin",
639
+ "model.layers.66.mlp.down_proj.weight": "pytorch_model-00068-of-00082.bin",
640
+ "model.layers.66.mlp.gate_proj.weight": "pytorch_model-00068-of-00082.bin",
641
+ "model.layers.66.mlp.up_proj.weight": "pytorch_model-00068-of-00082.bin",
642
+ "model.layers.66.post_attention_layernorm.weight": "pytorch_model-00068-of-00082.bin",
643
+ "model.layers.66.self_attn.k_proj.weight": "pytorch_model-00067-of-00082.bin",
644
+ "model.layers.66.self_attn.o_proj.weight": "pytorch_model-00067-of-00082.bin",
645
+ "model.layers.66.self_attn.q_proj.weight": "pytorch_model-00067-of-00082.bin",
646
+ "model.layers.66.self_attn.rotary_emb.inv_freq": "pytorch_model-00067-of-00082.bin",
647
+ "model.layers.66.self_attn.v_proj.weight": "pytorch_model-00067-of-00082.bin",
648
+ "model.layers.67.input_layernorm.weight": "pytorch_model-00069-of-00082.bin",
649
+ "model.layers.67.mlp.down_proj.weight": "pytorch_model-00069-of-00082.bin",
650
+ "model.layers.67.mlp.gate_proj.weight": "pytorch_model-00069-of-00082.bin",
651
+ "model.layers.67.mlp.up_proj.weight": "pytorch_model-00069-of-00082.bin",
652
+ "model.layers.67.post_attention_layernorm.weight": "pytorch_model-00069-of-00082.bin",
653
+ "model.layers.67.self_attn.k_proj.weight": "pytorch_model-00068-of-00082.bin",
654
+ "model.layers.67.self_attn.o_proj.weight": "pytorch_model-00068-of-00082.bin",
655
+ "model.layers.67.self_attn.q_proj.weight": "pytorch_model-00068-of-00082.bin",
656
+ "model.layers.67.self_attn.rotary_emb.inv_freq": "pytorch_model-00068-of-00082.bin",
657
+ "model.layers.67.self_attn.v_proj.weight": "pytorch_model-00068-of-00082.bin",
658
+ "model.layers.68.input_layernorm.weight": "pytorch_model-00070-of-00082.bin",
659
+ "model.layers.68.mlp.down_proj.weight": "pytorch_model-00070-of-00082.bin",
660
+ "model.layers.68.mlp.gate_proj.weight": "pytorch_model-00070-of-00082.bin",
661
+ "model.layers.68.mlp.up_proj.weight": "pytorch_model-00070-of-00082.bin",
662
+ "model.layers.68.post_attention_layernorm.weight": "pytorch_model-00070-of-00082.bin",
663
+ "model.layers.68.self_attn.k_proj.weight": "pytorch_model-00069-of-00082.bin",
664
+ "model.layers.68.self_attn.o_proj.weight": "pytorch_model-00069-of-00082.bin",
665
+ "model.layers.68.self_attn.q_proj.weight": "pytorch_model-00069-of-00082.bin",
666
+ "model.layers.68.self_attn.rotary_emb.inv_freq": "pytorch_model-00069-of-00082.bin",
667
+ "model.layers.68.self_attn.v_proj.weight": "pytorch_model-00069-of-00082.bin",
668
+ "model.layers.69.input_layernorm.weight": "pytorch_model-00071-of-00082.bin",
669
+ "model.layers.69.mlp.down_proj.weight": "pytorch_model-00071-of-00082.bin",
670
+ "model.layers.69.mlp.gate_proj.weight": "pytorch_model-00071-of-00082.bin",
671
+ "model.layers.69.mlp.up_proj.weight": "pytorch_model-00071-of-00082.bin",
672
+ "model.layers.69.post_attention_layernorm.weight": "pytorch_model-00071-of-00082.bin",
673
+ "model.layers.69.self_attn.k_proj.weight": "pytorch_model-00070-of-00082.bin",
674
+ "model.layers.69.self_attn.o_proj.weight": "pytorch_model-00070-of-00082.bin",
675
+ "model.layers.69.self_attn.q_proj.weight": "pytorch_model-00070-of-00082.bin",
676
+ "model.layers.69.self_attn.rotary_emb.inv_freq": "pytorch_model-00070-of-00082.bin",
677
+ "model.layers.69.self_attn.v_proj.weight": "pytorch_model-00070-of-00082.bin",
678
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00009-of-00082.bin",
679
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00009-of-00082.bin",
680
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00009-of-00082.bin",
681
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00009-of-00082.bin",
682
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00009-of-00082.bin",
683
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00008-of-00082.bin",
684
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00008-of-00082.bin",
685
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00008-of-00082.bin",
686
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00082.bin",
687
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00008-of-00082.bin",
688
+ "model.layers.70.input_layernorm.weight": "pytorch_model-00072-of-00082.bin",
689
+ "model.layers.70.mlp.down_proj.weight": "pytorch_model-00072-of-00082.bin",
690
+ "model.layers.70.mlp.gate_proj.weight": "pytorch_model-00072-of-00082.bin",
691
+ "model.layers.70.mlp.up_proj.weight": "pytorch_model-00072-of-00082.bin",
692
+ "model.layers.70.post_attention_layernorm.weight": "pytorch_model-00072-of-00082.bin",
693
+ "model.layers.70.self_attn.k_proj.weight": "pytorch_model-00071-of-00082.bin",
694
+ "model.layers.70.self_attn.o_proj.weight": "pytorch_model-00071-of-00082.bin",
695
+ "model.layers.70.self_attn.q_proj.weight": "pytorch_model-00071-of-00082.bin",
696
+ "model.layers.70.self_attn.rotary_emb.inv_freq": "pytorch_model-00071-of-00082.bin",
697
+ "model.layers.70.self_attn.v_proj.weight": "pytorch_model-00071-of-00082.bin",
698
+ "model.layers.71.input_layernorm.weight": "pytorch_model-00073-of-00082.bin",
699
+ "model.layers.71.mlp.down_proj.weight": "pytorch_model-00073-of-00082.bin",
700
+ "model.layers.71.mlp.gate_proj.weight": "pytorch_model-00073-of-00082.bin",
701
+ "model.layers.71.mlp.up_proj.weight": "pytorch_model-00073-of-00082.bin",
702
+ "model.layers.71.post_attention_layernorm.weight": "pytorch_model-00073-of-00082.bin",
703
+ "model.layers.71.self_attn.k_proj.weight": "pytorch_model-00072-of-00082.bin",
704
+ "model.layers.71.self_attn.o_proj.weight": "pytorch_model-00072-of-00082.bin",
705
+ "model.layers.71.self_attn.q_proj.weight": "pytorch_model-00072-of-00082.bin",
706
+ "model.layers.71.self_attn.rotary_emb.inv_freq": "pytorch_model-00072-of-00082.bin",
707
+ "model.layers.71.self_attn.v_proj.weight": "pytorch_model-00072-of-00082.bin",
708
+ "model.layers.72.input_layernorm.weight": "pytorch_model-00074-of-00082.bin",
709
+ "model.layers.72.mlp.down_proj.weight": "pytorch_model-00074-of-00082.bin",
710
+ "model.layers.72.mlp.gate_proj.weight": "pytorch_model-00074-of-00082.bin",
711
+ "model.layers.72.mlp.up_proj.weight": "pytorch_model-00074-of-00082.bin",
712
+ "model.layers.72.post_attention_layernorm.weight": "pytorch_model-00074-of-00082.bin",
713
+ "model.layers.72.self_attn.k_proj.weight": "pytorch_model-00073-of-00082.bin",
714
+ "model.layers.72.self_attn.o_proj.weight": "pytorch_model-00073-of-00082.bin",
715
+ "model.layers.72.self_attn.q_proj.weight": "pytorch_model-00073-of-00082.bin",
716
+ "model.layers.72.self_attn.rotary_emb.inv_freq": "pytorch_model-00073-of-00082.bin",
717
+ "model.layers.72.self_attn.v_proj.weight": "pytorch_model-00073-of-00082.bin",
718
+ "model.layers.73.input_layernorm.weight": "pytorch_model-00075-of-00082.bin",
719
+ "model.layers.73.mlp.down_proj.weight": "pytorch_model-00075-of-00082.bin",
720
+ "model.layers.73.mlp.gate_proj.weight": "pytorch_model-00075-of-00082.bin",
721
+ "model.layers.73.mlp.up_proj.weight": "pytorch_model-00075-of-00082.bin",
722
+ "model.layers.73.post_attention_layernorm.weight": "pytorch_model-00075-of-00082.bin",
723
+ "model.layers.73.self_attn.k_proj.weight": "pytorch_model-00074-of-00082.bin",
724
+ "model.layers.73.self_attn.o_proj.weight": "pytorch_model-00074-of-00082.bin",
725
+ "model.layers.73.self_attn.q_proj.weight": "pytorch_model-00074-of-00082.bin",
726
+ "model.layers.73.self_attn.rotary_emb.inv_freq": "pytorch_model-00074-of-00082.bin",
727
+ "model.layers.73.self_attn.v_proj.weight": "pytorch_model-00074-of-00082.bin",
728
+ "model.layers.74.input_layernorm.weight": "pytorch_model-00076-of-00082.bin",
729
+ "model.layers.74.mlp.down_proj.weight": "pytorch_model-00076-of-00082.bin",
730
+ "model.layers.74.mlp.gate_proj.weight": "pytorch_model-00076-of-00082.bin",
731
+ "model.layers.74.mlp.up_proj.weight": "pytorch_model-00076-of-00082.bin",
732
+ "model.layers.74.post_attention_layernorm.weight": "pytorch_model-00076-of-00082.bin",
733
+ "model.layers.74.self_attn.k_proj.weight": "pytorch_model-00075-of-00082.bin",
734
+ "model.layers.74.self_attn.o_proj.weight": "pytorch_model-00075-of-00082.bin",
735
+ "model.layers.74.self_attn.q_proj.weight": "pytorch_model-00075-of-00082.bin",
736
+ "model.layers.74.self_attn.rotary_emb.inv_freq": "pytorch_model-00075-of-00082.bin",
737
+ "model.layers.74.self_attn.v_proj.weight": "pytorch_model-00075-of-00082.bin",
738
+ "model.layers.75.input_layernorm.weight": "pytorch_model-00077-of-00082.bin",
739
+ "model.layers.75.mlp.down_proj.weight": "pytorch_model-00077-of-00082.bin",
740
+ "model.layers.75.mlp.gate_proj.weight": "pytorch_model-00077-of-00082.bin",
741
+ "model.layers.75.mlp.up_proj.weight": "pytorch_model-00077-of-00082.bin",
742
+ "model.layers.75.post_attention_layernorm.weight": "pytorch_model-00077-of-00082.bin",
743
+ "model.layers.75.self_attn.k_proj.weight": "pytorch_model-00076-of-00082.bin",
744
+ "model.layers.75.self_attn.o_proj.weight": "pytorch_model-00076-of-00082.bin",
745
+ "model.layers.75.self_attn.q_proj.weight": "pytorch_model-00076-of-00082.bin",
746
+ "model.layers.75.self_attn.rotary_emb.inv_freq": "pytorch_model-00076-of-00082.bin",
747
+ "model.layers.75.self_attn.v_proj.weight": "pytorch_model-00076-of-00082.bin",
748
+ "model.layers.76.input_layernorm.weight": "pytorch_model-00078-of-00082.bin",
749
+ "model.layers.76.mlp.down_proj.weight": "pytorch_model-00078-of-00082.bin",
750
+ "model.layers.76.mlp.gate_proj.weight": "pytorch_model-00078-of-00082.bin",
751
+ "model.layers.76.mlp.up_proj.weight": "pytorch_model-00078-of-00082.bin",
752
+ "model.layers.76.post_attention_layernorm.weight": "pytorch_model-00078-of-00082.bin",
753
+ "model.layers.76.self_attn.k_proj.weight": "pytorch_model-00077-of-00082.bin",
754
+ "model.layers.76.self_attn.o_proj.weight": "pytorch_model-00077-of-00082.bin",
755
+ "model.layers.76.self_attn.q_proj.weight": "pytorch_model-00077-of-00082.bin",
756
+ "model.layers.76.self_attn.rotary_emb.inv_freq": "pytorch_model-00077-of-00082.bin",
757
+ "model.layers.76.self_attn.v_proj.weight": "pytorch_model-00077-of-00082.bin",
758
+ "model.layers.77.input_layernorm.weight": "pytorch_model-00079-of-00082.bin",
759
+ "model.layers.77.mlp.down_proj.weight": "pytorch_model-00079-of-00082.bin",
760
+ "model.layers.77.mlp.gate_proj.weight": "pytorch_model-00079-of-00082.bin",
761
+ "model.layers.77.mlp.up_proj.weight": "pytorch_model-00079-of-00082.bin",
762
+ "model.layers.77.post_attention_layernorm.weight": "pytorch_model-00079-of-00082.bin",
763
+ "model.layers.77.self_attn.k_proj.weight": "pytorch_model-00078-of-00082.bin",
764
+ "model.layers.77.self_attn.o_proj.weight": "pytorch_model-00078-of-00082.bin",
765
+ "model.layers.77.self_attn.q_proj.weight": "pytorch_model-00078-of-00082.bin",
766
+ "model.layers.77.self_attn.rotary_emb.inv_freq": "pytorch_model-00078-of-00082.bin",
767
+ "model.layers.77.self_attn.v_proj.weight": "pytorch_model-00078-of-00082.bin",
768
+ "model.layers.78.input_layernorm.weight": "pytorch_model-00080-of-00082.bin",
769
+ "model.layers.78.mlp.down_proj.weight": "pytorch_model-00080-of-00082.bin",
770
+ "model.layers.78.mlp.gate_proj.weight": "pytorch_model-00080-of-00082.bin",
771
+ "model.layers.78.mlp.up_proj.weight": "pytorch_model-00080-of-00082.bin",
772
+ "model.layers.78.post_attention_layernorm.weight": "pytorch_model-00080-of-00082.bin",
773
+ "model.layers.78.self_attn.k_proj.weight": "pytorch_model-00079-of-00082.bin",
774
+ "model.layers.78.self_attn.o_proj.weight": "pytorch_model-00079-of-00082.bin",
775
+ "model.layers.78.self_attn.q_proj.weight": "pytorch_model-00079-of-00082.bin",
776
+ "model.layers.78.self_attn.rotary_emb.inv_freq": "pytorch_model-00079-of-00082.bin",
777
+ "model.layers.78.self_attn.v_proj.weight": "pytorch_model-00079-of-00082.bin",
778
+ "model.layers.79.input_layernorm.weight": "pytorch_model-00081-of-00082.bin",
779
+ "model.layers.79.mlp.down_proj.weight": "pytorch_model-00081-of-00082.bin",
780
+ "model.layers.79.mlp.gate_proj.weight": "pytorch_model-00081-of-00082.bin",
781
+ "model.layers.79.mlp.up_proj.weight": "pytorch_model-00081-of-00082.bin",
782
+ "model.layers.79.post_attention_layernorm.weight": "pytorch_model-00081-of-00082.bin",
783
+ "model.layers.79.self_attn.k_proj.weight": "pytorch_model-00080-of-00082.bin",
784
+ "model.layers.79.self_attn.o_proj.weight": "pytorch_model-00080-of-00082.bin",
785
+ "model.layers.79.self_attn.q_proj.weight": "pytorch_model-00080-of-00082.bin",
786
+ "model.layers.79.self_attn.rotary_emb.inv_freq": "pytorch_model-00080-of-00082.bin",
787
+ "model.layers.79.self_attn.v_proj.weight": "pytorch_model-00080-of-00082.bin",
788
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00010-of-00082.bin",
789
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00010-of-00082.bin",
790
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00010-of-00082.bin",
791
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00010-of-00082.bin",
792
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00010-of-00082.bin",
793
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00009-of-00082.bin",
794
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00009-of-00082.bin",
795
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00009-of-00082.bin",
796
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00082.bin",
797
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00009-of-00082.bin",
798
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00011-of-00082.bin",
799
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00011-of-00082.bin",
800
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00011-of-00082.bin",
801
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00011-of-00082.bin",
802
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00011-of-00082.bin",
803
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00010-of-00082.bin",
804
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00010-of-00082.bin",
805
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00010-of-00082.bin",
806
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00082.bin",
807
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00010-of-00082.bin",
808
+ "model.norm.weight": "pytorch_model-00081-of-00082.bin"
809
+ }
810
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "eos_token": "</s>",
4
+ "unk_token": "<|endoftext|>",
5
+ "pad_token": "<|endoftext|>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "[CLS]",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "</s>",
6
+ "model_max_length": 2048,
7
+ "tokenizer_class": "GPT2Tokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff