--- library_name: transformers license: llama3 datasets: - aqua_rat - microsoft/orca-math-word-problems-200k - m-a-p/CodeFeedback-Filtered-Instruction --- # Smaug-Llama-3-70B-Instruct-32K ### Built with Meta Llama 3 This is a 32K version of Smaug-Llama-3-70B-Instruct. It uses PoSE (https://arxiv.org/abs/2309.10400) and LoRA (https://arxiv.org/abs/2106.09685) adapter transfer. More details are coming soon. Needle-In-A-Haystack (https://github.com/jzhang38/EasyContext) heatmap: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/8Z5XgqrZXKcb2hmeTKTT6.png) ### Model Description - **Developed by:** [Abacus.AI](https://abacus.ai) - **License:** https://llama.meta.com/llama3/license/ - **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct). ## How to use The prompt format is unchanged from Llama 3 70B Instruct. ### Use with transformers See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "abacusai/Smaug-Llama-3-70B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ## Evaluation ### Arena-Hard ### Arena-Hard Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. | Model | Score | 95% Confidence Interval | Average Tokens | | :---- | ---------: | ----------: | ------: | | GPT-4-Turbo-2024-04-09 | 82.6 | (-1.8, 1.6) | 662 | | GPT-4o | 78.3 | (-2.4, 2.1) | 685 | | Gemini-1.5-pro-latest | 72.1 | (-2.3, 2.2) | 630 | | Claude-3-Opus-20240229 | 60.4 | (-3.3, 2.4) | 541 | | **Smaug-Llama-3-70B-Instruct-32K** | 60.0 | (-2.6, 2.1) | 844 | | Smaug-Llama-3-70B-Instruct | 56.7 | (-2.2, 2.6) | 661 | | GPT-4-0314 | 50.0 | (-0.0, 0.0) | 423 | | Claude-3-Sonnet-20240229 | 46.8 | (-2.1, 2.2) | 552 | | Llama-3-70B-Instruct | 41.1 | (-2.5, 2.4) | 583 | | GPT-4-0613 | 37.9 | (-2.2, 2.0) | 354 | | Mistral-Large-2402 | 37.7 | (-1.9, 2.6) | 400 | | Mixtral-8x22B-Instruct-v0.1 | 36.4 | (-2.7, 2.9) | 430 | | Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2) | 474 | | Command-R-Plus | 33.1 | (-2.1, 2.2) | 541 | | Mistral-Medium | 31.9 | (-2.3, 2.4) | 485 | | GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0) | 401 | Note that we believe the number of tokens/verbosity of the model strongly influences the GPT-4 judge in this case, and at least partially explains the improvement in Arena-Hard score for the 32K model. ### OpenLLM Leaderboard Manual Evaluation | Model | ARC | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K* | Average | | :---- | ---: | ------: | ---: | ---: | ---: | ---: | ---: | | Smaug-Llama-3-70B-Instruct-32K | 70.1 | TBA | TBA | 61.9 | 82.2 | TBA | TBA | | Llama-3-70B-Instruct | 71.4 | 85.7 | 80.0 | 61.8 | 82.9 | 91.1 | 78.8 | **GSM8K** The GSM8K numbers quoted here are computed using a recent release of the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/). The commit used by the leaderboard has a significant issue that impacts models that tend to use `:` in their responses due to a bug in the stop word configuration for GSM8K. The issue is covered in more detail in this [GSM8K evaluation discussion](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/770). The score for both Llama-3 and this model are significantly different when evaluated with the updated harness as the issue with stop words has been addressed.