--- language: - ja library_name: transformers license: apache-2.0 metrics: - accuracy - f1 pipeline_tag: text-classification datasets: - LoneWolfgang/japanese-twitter-sentiment --- # BERT for Sentiment Analysis of Japanese Twitter This model was finetuned from [BERT for Japanese Twitter](https://huggingface.co/LoneWolfgang/bert-for-japanese-twitter), which was adapted from Japanese BERT by Tohoku NLP by continuing MLM on a Twitter corpus. It used [Japanese Twitter Sentiment 1k (JTS1k)](https://huggingface.co/datasets/LoneWolfgang/japanese-twitter-sentiment). For a model without the mixed label, please use the main version of [BERT for Japanese Twitter Sentiment](https://huggingface.co/LoneWolfgang/bert-for-japanese-twitter-sentiment). ## Labels 0 -> Negative; 1 -> Neutral; 2 -> Positive; 3 -> Mixed ## Example Pipeline ```python from transformers import pipeline sentiment = pipeline("sentiment-analysis", model="LoneWolfgang/bert-for-japanese-twitter-sentiment-mixed-label") sentiment ("ケーキは美味しかったけど、店員さんの態度が少し残念だった。") ``` ``` [{'label': 'mixed', 'score': 0.6090}] ```