Update README.md
Browse files
README.md
CHANGED
@@ -7,11 +7,25 @@ metrics:
|
|
7 |
- accuracy
|
8 |
- f1
|
9 |
pipeline_tag: text-classification
|
|
|
|
|
10 |
---
|
11 |
|
12 |
# BERT for Sentiment Analysis of Japanese Twitter
|
|
|
13 |
This model was finetuned from [BERT for Japanese Twitter](https://huggingface.co/LoneWolfgang/bert-for-japanese-twitter).
|
14 |
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- accuracy
|
8 |
- f1
|
9 |
pipeline_tag: text-classification
|
10 |
+
datasets:
|
11 |
+
- LoneWolfgang/japanese-twitter-sentiment
|
12 |
---
|
13 |
|
14 |
# BERT for Sentiment Analysis of Japanese Twitter
|
15 |
+
|
16 |
This model was finetuned from [BERT for Japanese Twitter](https://huggingface.co/LoneWolfgang/bert-for-japanese-twitter).
|
17 |
|
18 |
+
<b>Labels</b>:
|
19 |
+
0 -> Negative;
|
20 |
+
1 -> Neutral;
|
21 |
+
2 -> Positive
|
22 |
|
23 |
+
## Example Pipeline
|
24 |
+
```python
|
25 |
+
from transformers import pipeline
|
26 |
+
sentiment = pipeline("sentiment-analysis", model="LoneWolfgang/bert-for-japanese-twitter-sentiment")
|
27 |
+
sentiment ("こちらのカフェ、サービスが残念でした。二度と行かないかな…😞 #がっかり")
|
28 |
+
```
|
29 |
+
```
|
30 |
+
[{'label': 'negative', 'score': 0.8242}]
|
31 |
+
```
|