--- language: - pt license: mit tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model_index: - name: bertimbau-base-lener_br results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br args: lener_br metric: name: Accuracy type: accuracy value: 0.9692504609383333 base_model: neuralmind/bert-base-portuguese-cased model-index: - name: Luciano/bertimbau-base-lener_br results: - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: test metrics: - type: accuracy value: 0.9824282794418222 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDZiZTRmMzRiZDFjOGMzZTM3ODRmNTEwNjI5OTM2ZDhlZjViMDk0YmJjOWViYjM3YmJmZGI2MjJiOTI3OGNmZCIsInZlcnNpb24iOjF9.7DVb3B_moqPXev5yxjcCvBCZDcJdmm3qZsSrp-RVOggLEr_AUfkBrF_76tDVLs9DszD1AlW4ERXcc0ZCqSCaDw - type: precision value: 0.9877557596262284 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTE2MGQ4ZGM1NTEwOGFmMjM3ODAyYTg3MWM1YjVhZGVlYThiNzFjYTE4NWJhOTU3OWZjMjhkODcwNGNiMmIxMyIsInZlcnNpb24iOjF9.G1e_jAOIDcuaOXWNjeRqlHTqJHVc_akZavhyvgBkAPiCTRgoTR24OUu9e_izofDMSTo4xhkMIwsC_O9tKzkNCA - type: recall value: 0.9870401674313772 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTkyZjEwMzk2NTBjY2RhMWVhYWVkOWQ2ZThkZDMwODczMDVkNDI2ZjM3OTA1ODg5NGQyYWUxMGQ5MDRkNjNlNiIsInZlcnNpb24iOjF9.qDL8618-ZTT_iO-eppn7JzVVfd_ayuj4mTT7eIc3zFYKJUp4KNpFgxnjuSVEZTcdOG48YrSISXJoHM5jVXg_DA - type: f1 value: 0.9873978338768773 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjYwOWZkZmFiMTRjY2UyOTJmMDNjMzkzNjUxYTAzYzM2ZDNkMmU0NTQ5NDlmMzU5YWExMDNiZjUzOGVlZjc1OSIsInZlcnNpb24iOjF9.T7MDH4H4E6eiLZot4W_tNzVgi-ctOrSb148x9WttkJFaxh-2P4kNmm4bKJhF1ZZZKgja80hKp_Nm9dmqXU7gAg - type: loss value: 0.11542011797428131 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDA3OGRkY2Q2MjlkZWZlZTVhZDk0MjY3MDA0MzgwZjI4MTk3Y2Q2ZmRkMGI3OTQwMzcyMzVjMGE5MzU4ODY5MiIsInZlcnNpb24iOjF9.nHtVSN-vvFjDRCWC5dXPf8dmk9Rrj-JNqvehDSGCAGLl3WknpwNHzCrJM9sNlRiNgwEIA4ekBHOC_V_OHhp7Bw - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: validation metrics: - type: accuracy value: 0.9692504609383333 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjY2N2VkZTIyMWM2ZTUxYzFiNjFhNzgwODgzNDQxNTMwODczMThjZDE5MzE3MTllN2ZlNjc4OWI0YTY0NzJkNCIsInZlcnNpb24iOjF9._atPyYtbN7AmDCZHNQHeBDFolzgKbQ04C1c1gfNBomkxlLXiZUVDSPwCNP9fveXhnXwkDsoy3hfm44BTsHtBAw - type: precision value: 0.9786866842043531 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGQzMjM1M2U2MzZiZjJmNGQ1NmUxNjE0NWYyOWJkNGM3NmE0NDg2MjAwZGNkNGZmZDEwMjkwZGQ1MDgyMWU3ZSIsInZlcnNpb24iOjF9.1XNuw2s47lqZD-ywmdEcI6UpPyl_aR-8cxlU1laQYEsUNW1fEZwB90sr7cSbNNTndzEsuH9VzeKgHwlHarq7Dg - type: recall value: 0.9840619998315222 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjllM2VlZTI5NzZlNGFhMjIyN2ZmYmQzNzQ2NDYxZWNkMzY5NzM0YTY3MDE2OTMxMjdiYzkwNjc1ZjBkNDRjYSIsInZlcnNpb24iOjF9.C7SeMwbtrmD24YWsYsxi4RRaVSsuQU-Rj83b-vZ8_H1IggmyNMpv8Y2z1mDh6b5UgaHpuk9YQb9aRKbQuCjTCA - type: f1 value: 0.9813669814173863 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDZjNjNiZjRhNThhNzBiMDNmODIyOTM0YjEwNWVhZTQ5MWRiYzU2ZjBkOGY3NzgzOGE2ZTJkOTNhZWZlMzgxYyIsInZlcnNpb24iOjF9.YDySY0KSF3PieEXXjx1y6GsXr9PQVNF1RW_zAQNTPcbgU8OEwyts_tUXFIT61QVGVchFOG4bLFs0ggOuwvZKBA - type: loss value: 0.22302456200122833 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzFhNTFiYzE1ZjY4MmRjMTI5NGY2YWEyYzY4NzBkYTVjMTk0MWVkODBhY2M0NWQ0ZjM1MmVjZTRmM2RhOTUxZiIsInZlcnNpb24iOjF9.-AXmb23GEbxQ282y9wL-Xvv5cZg0Z3SGQQks5As_BrXlCf8ay8sgd1VWEB4NTepn8MnKJgJkqyQK4JXxSSYCCQ - task: type: token-classification name: Token Classification dataset: name: lener_br type: lener_br config: lener_br split: train metrics: - type: accuracy value: 0.9990127507699392 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODEwMWUyNjU0ZjUyODQ2ZjQ3Y2VjOWY5YWNmZDczMDhhYzZiY2ZjMTFmZTUyZDZhOWJhMjcwMWJlZWNmMDIwOSIsInZlcnNpb24iOjF9.acwBn2no3TJ2cMGaGbQlNn9smS9XTsfKUat5JsKUVHTJa4H6okb5W6Va67KkrT383paAHOkoipb1wJwWfsseCg - type: precision value: 0.9992300721767728 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQyNDJhNTgzNjc4OWQ5ODcwN2RjM2JhZmNjODljZjIyYWI3MGIyOGNiYWYxNzczNDQyNTZjMDhiODYyYWRiMyIsInZlcnNpb24iOjF9.Z_W8fuCgV5KWChMZXaoJtX-u-SxBd8GcfVXBjFnf7BYqrWoTkcczJqJP1g74Gjrp6xp_VatQ-V1Por5Yzd3dCQ - type: recall value: 0.9993028952029684 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2ZiMjE4NDE0NmI1NjVhNzIyYjJjMTUyZDU2OGY3NTgyYTNhZDBjNWMzYWZmMmI5ZjczZjgyYmZjOGM0YTcyMiIsInZlcnNpb24iOjF9.jB5kEKsJMs40YVJ0RmFENEbKINKreAJN-EYeRrQMCwOrfTXxyxq0-cwgF_T2UJ1vl4eL-MAV2Lc3p449gaDUCg - type: f1 value: 0.9992664823630992 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTQzMWRkZjIyNDY1NzU2NDNmNWJlMDIxOTY4Y2UyYjJlOTVkNTEwZGEwODdjZDMwYTg5ODE3NTlhN2JjMjZlZCIsInZlcnNpb24iOjF9.DspzVgqZh5jbRfx-89Ygh7dbbPBsiLyOostyQ4el1SIoGVRtEfxzYk780hEIRqqagWk63DXY3_eLIRyiBFf8BQ - type: loss value: 0.0035279043950140476 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGQ1OWQxNjNmYzNlMzliODljNTY2YWNhMTUzNjVkMzA0NDYzZWY0ODFiMDlmZWZhNDlkODEyYWU5OWY3YjQyOSIsInZlcnNpb24iOjF9.6S7KwMDEBMWG95o3M0kOnKofgVnPwX8Sf2bQiXns-kZkcrOTXJCq7czloDbSk9d9-sumdxXYk9-oQFDfR6DTAw --- # bertimbau-base-lener_br This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: 0.2298 - Precision: 0.8501 - Recall: 0.9138 - F1: 0.8808 - Accuracy: 0.9693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0686 | 1.0 | 1957 | 0.1399 | 0.7759 | 0.8669 | 0.8189 | 0.9641 | | 0.0437 | 2.0 | 3914 | 0.1457 | 0.7997 | 0.8938 | 0.8441 | 0.9623 | | 0.0313 | 3.0 | 5871 | 0.1675 | 0.8466 | 0.8744 | 0.8603 | 0.9651 | | 0.0201 | 4.0 | 7828 | 0.1621 | 0.8713 | 0.8839 | 0.8775 | 0.9718 | | 0.0137 | 5.0 | 9785 | 0.1811 | 0.7783 | 0.9159 | 0.8415 | 0.9645 | | 0.0105 | 6.0 | 11742 | 0.1836 | 0.8568 | 0.9009 | 0.8783 | 0.9692 | | 0.0105 | 7.0 | 13699 | 0.1649 | 0.8339 | 0.9125 | 0.8714 | 0.9725 | | 0.0059 | 8.0 | 15656 | 0.2298 | 0.8501 | 0.9138 | 0.8808 | 0.9693 | | 0.0051 | 9.0 | 17613 | 0.2210 | 0.8437 | 0.9045 | 0.8731 | 0.9693 | | 0.0061 | 10.0 | 19570 | 0.2499 | 0.8627 | 0.8946 | 0.8784 | 0.9681 | | 0.0041 | 11.0 | 21527 | 0.1985 | 0.8560 | 0.9052 | 0.8799 | 0.9720 | | 0.003 | 12.0 | 23484 | 0.2204 | 0.8498 | 0.9065 | 0.8772 | 0.9699 | | 0.0014 | 13.0 | 25441 | 0.2152 | 0.8425 | 0.9067 | 0.8734 | 0.9709 | | 0.0005 | 14.0 | 27398 | 0.2317 | 0.8553 | 0.8987 | 0.8765 | 0.9705 | | 0.0015 | 15.0 | 29355 | 0.2436 | 0.8543 | 0.8989 | 0.8760 | 0.9700 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3