--- language: - hr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - google/fleurs metrics: - wer base_model: openai/whisper-small model-index: - name: melita1mu results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_hr_fleurs type: google/fleurs config: hr_hr split: test args: 'config: hr, split: test' metrics: - type: wer value: 45.596060228687875 name: Wer --- # melita1mu This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_hr_fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.5013 - Wer: 45.5961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0204 | 4.17 | 1000 | 0.4216 | 36.3580 | | 0.0017 | 8.33 | 2000 | 0.4697 | 37.7222 | | 0.0008 | 12.5 | 3000 | 0.4922 | 39.6015 | | 0.0006 | 16.67 | 4000 | 0.5013 | 45.5961 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1