--- library_name: transformers license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased-finetuned-ner-eng results: [] --- # distilbert-base-cased-finetuned-ner-eng This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1677 - Precision: 0.9005 - Recall: 0.9037 - F1: 0.9021 - Accuracy: 0.9532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 451 | 0.1872 | 0.8908 | 0.8907 | 0.8908 | 0.9472 | | 0.3208 | 2.0 | 902 | 0.1698 | 0.9005 | 0.9012 | 0.9009 | 0.9527 | | 0.1569 | 3.0 | 1353 | 0.1677 | 0.9005 | 0.9037 | 0.9021 | 0.9532 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0