FMDMllama / inference.py
LuozzzzzzzzzzzzzzY's picture
Upload inference.py
717dd41 verified
from transformers import (
AutoConfig,
AutoTokenizer,
BitsAndBytesConfig,
AutoProcessor,
LlamaForCausalLM,
MllamaForConditionalGeneration,
AutoModelForCausalLM
)
import torch
from peft import PeftModel
from datasets import load_from_disk
import pandas as pd
from tqdm import tqdm
from torch.utils.data import DataLoader
mode_path = '/gemini/pretrain/meta-llamaLlama-3.2-11B-Vision-Instruct'
lora_path = '/gemini/code/FMD/model/final_model_4/checkpoint-2440' # lora 输出对应 checkpoint 路径
# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True)
# 加载模型
model = MllamaForConditionalGeneration.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()
# 加载lora权重
model = PeftModel.from_pretrained(model, model_id=lora_path)
test_dataset = load_from_disk("/gemini/code/FMD/final_dataset/Test")
results = []
with torch.no_grad():
for data in tqdm(test_dataset):
model_input = tokenizer(
data['instruction_1'], # 输入文本
add_special_tokens=False, # 不添加特殊标记
truncation=True, # 启用截断
max_length=3000 # 设置最大长度
)
model_input = tokenizer.decode(model_input["input_ids"], skip_special_tokens=False)
model_inputs = tokenizer(f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are an expert in financial misinformation detection.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{model_input}\nimage information: {data['image_info']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", truncation=True, max_length=3600, add_special_tokens=False,return_tensors="pt").to('cuda')
# 生成模型输出
generated_ids = model.generate(**model_inputs, max_new_tokens=1024)
# 去除输入部分的 token,以保留生成的预测结果
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# 解码生成的预测结果
responses = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(responses)
# 将每个结果按顺序存储到列表中
results.append({
"ID": data['ID'],
"response": responses
})
def split_response(text):
#获取Prediction的内容
prediction_pattern = r"Prediction:\s*(False|True|NEI)\s*$"
prediction_match = re.search(prediction_pattern, text, re.MULTILINE)
if prediction_match:
prediction = prediction_match.group(1).strip()
else:
prediction = 'None'
print("没有找到匹配的内容")
#获取Explanation的内容
explanation_pattern = r"Explanation:\s*(.*)"
explanation_match = re.search(explanation_pattern, text, re.MULTILINE)
if explanation_match:
explanation = explanation_match.group(1).strip()
else:
explanation = None # 如果没有匹配项,设置为 None
return prediction, explanation
if results:
df = pd.DataFrame(results)
for index, row in df.iterrows():
text = row['response']
prediction, explanation= split_response(text)
df.at[index, 'Prediction'] = prediction
df.at[index, 'Explanation'] = explanation
df['ID'] = df['ID'].str.replace('FMD_test_', '', regex=False)
df = df.rename(columns={'ID': 'id','Prediction': 'pred','Explanation': 'explanation'})
df = df.drop('response',axis=1)
mapping = {
'False': 0,
'True': 1,
'NEI': 2
}
df['pred'] = df['pred'].replace(mapping)
df.to_csv("/gemini/code/FMD/inference/result_final_model_4/result.csv",index = False)