Lynxpda commited on
Commit
4cebbe8
·
verified ·
1 Parent(s): 2245f9b

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. 2_Dense/pytorch_model.bin +1 -1
  2. README.md +8 -8
  3. model.safetensors +1 -1
2_Dense/pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5307abae11da06d35d3ffa3a2fc23f67b5b7bedab018a2c7447bf25254759f00
3
  size 2363964
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e527afae3fdfa5e2187c8e0c860cac4c2b7589b015d6e8bfad08f019e9a17540
3
  size 2363964
README.md CHANGED
@@ -8,7 +8,7 @@ tags:
8
 
9
  ---
10
 
11
- # LaBSE-veps
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -28,7 +28,7 @@ Then you can use the model like this:
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('Lynxpda/LaBSE-veps')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
@@ -47,9 +47,9 @@ The model was trained with the parameters:
47
 
48
  **DataLoader**:
49
 
50
- `torch.utils.data.dataloader.DataLoader` of length 1175 with parameters:
51
  ```
52
- {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
53
  ```
54
 
55
  **Loss**:
@@ -63,16 +63,16 @@ Parameters of the fit()-Method:
63
  ```
64
  {
65
  "epochs": 5,
66
- "evaluation_steps": 20,
67
- "evaluator": "__main__.ChainScoreEvaluator",
68
  "max_grad_norm": 1,
69
  "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
70
  "optimizer_params": {
71
- "lr": 1e-05
72
  },
73
  "scheduler": "warmupcosine",
74
  "steps_per_epoch": null,
75
- "warmup_steps": 500,
76
  "weight_decay": 0.01
77
  }
78
  ```
 
8
 
9
  ---
10
 
11
+ # {MODEL_NAME}
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
 
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
 
47
 
48
  **DataLoader**:
49
 
50
+ `torch.utils.data.dataloader.DataLoader` of length 2424 with parameters:
51
  ```
52
+ {'batch_size': 192, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
53
  ```
54
 
55
  **Loss**:
 
63
  ```
64
  {
65
  "epochs": 5,
66
+ "evaluation_steps": 50,
67
+ "evaluator": "NoneType",
68
  "max_grad_norm": 1,
69
  "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
70
  "optimizer_params": {
71
+ "lr": 2e-05
72
  },
73
  "scheduler": "warmupcosine",
74
  "steps_per_epoch": null,
75
+ "warmup_steps": 200,
76
  "weight_decay": 0.01
77
  }
78
  ```
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:01cd3527db51e2dbcb0f273d5b6739411ea06b2fdd6d7f3438a5abbca6303a85
3
  size 1883730160
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90e7e0c30f0d021aba318edabd82c67901d9b1398af619b3ec5e20e29e648f91
3
  size 1883730160