File size: 6,271 Bytes
477a2db
03d6c4e
477a2db
 
7256c50
477a2db
 
 
ddd6b0a
 
7256c50
43933b3
 
 
 
477a2db
 
 
 
 
03d6c4e
2eff4ec
03d6c4e
 
c7b935a
477a2db
73b3371
477a2db
2eff4ec
388bdea
6cce9c0
 
 
 
 
2eff4ec
6cce9c0
 
 
 
 
5ab028e
 
 
6cce9c0
 
 
 
aacdbd9
 
 
6cce9c0
 
 
 
5ab028e
 
 
 
6cce9c0
 
 
aacdbd9
 
 
6cce9c0
 
 
 
5ab028e
 
6cce9c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7256c50
ddd6b0a
 
22e8baa
d502f23
22e8baa
ecb749d
ddd6b0a
 
 
 
 
 
 
ecb749d
ddd6b0a
 
ecb749d
ddd6b0a
ecb749d
ddd6b0a
 
c54d873
03d6c4e
4a1aa48
2eff4ec
03d6c4e
 
2eff4ec
c54d873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22e8baa
477a2db
7256c50
477a2db
 
22e8baa
6cc0fa1
22e8baa
402b465
2eff4ec
 
22e8baa
aacdbd9
 
ed1b25d
22e8baa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
- instruction fine-tuning
model-index:
- name: flan-t5-small-distil-v2
  results: []
language:
- en
pipeline_tag: text2text-generation
widget:
  - text: >-
      how can I become more healthy?
    example_title: example
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

<p align="center" width="100%">
    <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>

# LaMini-Flan-T5-77M

[![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]()

This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/).  
You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper. 

<table>
<thead>
  <tr>
    <th>Base model</th>
    <th colspan="4">LaMini-LM series (#parameters)</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>T5</td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td>
    <td></td>
  </tr>
   <tr>
        <td>Flan-T5</td>
        <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td>
        <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td>
        <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td>
    <td></td>
  </tr>
    <tr>
    <td>Cerebras-GPT</td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td>
  </tr>
  <tr>
    <td>GPT-2</td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td>
    <td></td>
  </tr>
  <tr>
    <td>GPT-Neo</td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td>
    <td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td>
    <td></td>
    <td></td>
  </tr>
  <tr>
    <td>GPT-J</td>
    <td colspan="4">coming soon</td>
  </tr>
  <tr>
    <td>LLaMA</td>
    <td colspan="4">coming soon</td>
  </tr>

  
</tbody>
</table>


## Use

### Intended use
We recommend using the model to response to human instructions written in natural language. 

We now show you how to load and use our model using HuggingFace `pipeline()`.

```python
# pip install -q transformers
from transformers import pipeline

checkpoint = "{model_name}"

model = pipeline('text2text-generation', model = checkpoint)

input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"'
generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text']

print("Response", generated_text)
```

## Training Procedure

<p align="center" width="100%">
    <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a>
</p>

We initialize with [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 77M. 

### Training Hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

## Evaluation
We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). 

## Limitations

More information needed


# Citation

```bibtex
@misc{lamini-lm,
      title={LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, 
      author={Minghao Wu and Abdul Waheed and Chiyu Zhang and Muhammad Abdul-Mageed and Alham Fikri Aji},
      year={2023},
      publisher = {GitHub},
      journal = {GitHub repository},
      url = {https://github.com/mbzuai-nlp/LaMini-LM/}
}
```