File size: 2,370 Bytes
ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 dd2c936 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 ca2f122 92d00b9 c406a61 92d00b9 ca2f122 92d00b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
datasets:
- Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered
---
# MISHANM/Assamese_text_generation_Llama3_8B_instruct
This model is fine-tuned for the Assamese language, capable of answering queries and translating text Between English and Assamese. It leverages advanced natural language processing techniques to provide accurate and context-aware responses.
## Model Details
1. Language: Assamese
2. Tasks: Question Answering(Assamese to Assamese), Translation (English to Assamese )
3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct
# Training Details
The model is trained on approx 29K instruction samples.
1. GPUs: 2*AMD Instinct™ MI210 Accelerators
## Inference with HuggingFace
```python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Assamese_text_generation_Llama3_8B_instruct"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "You are a Assamese language expert and linguist, with same knowledge give response in Assamese language.",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt")
output = model.generate( # Use model.module for DataParallel
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """What is LLM ."""
translated_text = generate_text(prompt)
print(translated_text)
```
## Citation Information
```
@misc{MISHANM/Assamese_text_generation_Llama3_8B_instruct,
author = {Mishan Maurya},
title = {Introducing Fine Tuned LLM for Assamese Language},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
```
- PEFT 0.12.0 |