File size: 2,357 Bytes
2c05730
fc65f1c
 
 
 
2c05730
 
fc65f1c
2c05730
fc65f1c
2c05730
 
 
 
fc65f1c
a62f068
fc65f1c
2c05730
 
 
fc65f1c
2c05730
fc65f1c
 
 
 
 
2c05730
 
fc65f1c
 
 
 
 
2c05730
fc65f1c
 
2c05730
fc65f1c
2c05730
fc65f1c
2c05730
fc65f1c
 
 
 
 
 
 
 
 
 
2c05730
fc65f1c
 
2c05730
fc65f1c
 
 
 
 
 
2c05730
fc65f1c
15c88aa
fc65f1c
 
2c05730
 
 
fc65f1c
2c05730
fc65f1c
 
 
 
 
 
 
 
 
 
 
2c05730
 
fc65f1c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
datasets:
- lemon-mint/korean_english_parallel_wiki_augmented_v1
---

# MISHANM/Korean_eng_text_generation_Llama3_8B_instruct

This model is fine-tuned for the Korean language, capable of answering queries and translating text Between English and Korean . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.



## Model Details
1. Language: Korean
2. Tasks: Question Answering(Korean to Korean) , Translation (Korean to English)
3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct



# Training Details

The model is trained on approx 90000 instruction samples.
1. GPUs: 4*AMD Radeon™ PRO V620 
2. Training Time: 80:29:40 
  
   


 ## Inference with HuggingFace
 ```python3
 
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Korean_eng_text_generation_Llama3_8B_instruct"

model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
    # Format the prompt according to the chat template
    messages = [
        {
            "role": "system",
            "content": "You are a Korean language expert and linguist, with same knowledge give response in Korean language.",
        },
        {"role": "user", "content": prompt}
    ]

    # Apply the chat template
    formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

    # Tokenize and generate output
    inputs = tokenizer(formatted_prompt, return_tensors="pt")
    output = model.generate(  
        **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
    )
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """LLM에서 시를 써 보세요"""
translated_text = generate_text(prompt)
print(translated_text)



```

## Citation Information
```
@misc{MISHANM/Korean_eng_text_generation_Llama3_8B_instruct,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Korean Language},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
```


- PEFT 0.12.0