Update README.md
Browse files
README.md
CHANGED
@@ -3,23 +3,28 @@ base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
|
3 |
library_name: peft
|
4 |
---
|
5 |
|
6 |
-
# MISHANM/
|
7 |
-
|
8 |
-
This model is fine-tuned for the Sindhi language, capable of answering queries and translating text Between English and Sindhi . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.
|
9 |
|
|
|
10 |
|
11 |
|
12 |
## Model Details
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
|
19 |
# Training Details
|
20 |
|
21 |
-
The model is trained on approx
|
22 |
-
1. GPUs:
|
23 |
|
24 |
|
25 |
|
@@ -34,7 +39,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
|
36 |
# Load the fine-tuned model and tokenizer
|
37 |
-
model_path = "MISHANM/
|
38 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
39 |
|
40 |
# Wrap the model with DataParallel if multiple GPUs are available
|
@@ -53,7 +58,7 @@ def generate_text(prompt, max_length=1000, temperature=0.9):
|
|
53 |
messages = [
|
54 |
{
|
55 |
"role": "system",
|
56 |
-
"content": "You are a
|
57 |
},
|
58 |
{"role": "user", "content": prompt}
|
59 |
]
|
@@ -69,7 +74,7 @@ def generate_text(prompt, max_length=1000, temperature=0.9):
|
|
69 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
70 |
|
71 |
# Example usage
|
72 |
-
prompt = """Write a
|
73 |
translated_text = generate_text(prompt)
|
74 |
print(translated_text)
|
75 |
|
@@ -78,9 +83,9 @@ print(translated_text)
|
|
78 |
|
79 |
## Citation Information
|
80 |
```
|
81 |
-
@misc{MISHANM/
|
82 |
author = {Mishan Maurya},
|
83 |
-
title = {Introducing Fine Tuned LLM for
|
84 |
year = {2024},
|
85 |
publisher = {Hugging Face},
|
86 |
journal = {Hugging Face repository},
|
|
|
3 |
library_name: peft
|
4 |
---
|
5 |
|
6 |
+
# MISHANM/Multilingual_Llama-3-8B-Instruct
|
|
|
|
|
7 |
|
8 |
+
This model is fine-tuned for Multi languages , capable of answering queries and translating text from English to Multiple languages . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.
|
9 |
|
10 |
|
11 |
## Model Details
|
12 |
+
This model is based on meta-llama/Llama-3.2-3B-Instruct and has been LoRA finetuned on Indic datasets:
|
13 |
+
1.Gujarati
|
14 |
+
2.Kannada
|
15 |
+
3.Hindi
|
16 |
+
4.Odia
|
17 |
+
5.Punjabi
|
18 |
+
6.Bengali
|
19 |
+
7.Tamil
|
20 |
+
8.Telugu
|
21 |
|
22 |
|
23 |
|
24 |
# Training Details
|
25 |
|
26 |
+
The model is trained on approx 321K instruction samples.
|
27 |
+
1. GPUs: 2*AMD Instinct™ MI210 Accelerators
|
28 |
|
29 |
|
30 |
|
|
|
39 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
|
41 |
# Load the fine-tuned model and tokenizer
|
42 |
+
model_path = "MISHANM/Multilingual_Llama-3-8B-Instruct"
|
43 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
44 |
|
45 |
# Wrap the model with DataParallel if multiple GPUs are available
|
|
|
58 |
messages = [
|
59 |
{
|
60 |
"role": "system",
|
61 |
+
"content": "You are a language expert and linguist, with same knowledge give response in ().", #In place of "()" write your desired language in which response is required. ",
|
62 |
},
|
63 |
{"role": "user", "content": prompt}
|
64 |
]
|
|
|
74 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
75 |
|
76 |
# Example usage
|
77 |
+
prompt = """Write a story about LLM ."""
|
78 |
translated_text = generate_text(prompt)
|
79 |
print(translated_text)
|
80 |
|
|
|
83 |
|
84 |
## Citation Information
|
85 |
```
|
86 |
+
@misc{MISHANM/Multilingual_Llama-3-8B-Instruct,
|
87 |
author = {Mishan Maurya},
|
88 |
+
title = {Introducing Fine Tuned LLM for Indic Languages},
|
89 |
year = {2024},
|
90 |
publisher = {Hugging Face},
|
91 |
journal = {Hugging Face repository},
|