--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft datasets: - Tensoic/Alpaca-Gujarati - Tensoic/airoboros-3.2_kn - ravithejads/samvaad-hi-filtered - HydraIndicLM/hindi_alpaca_dolly_67k - OdiaGenAI/Odia_Alpaca_instructions_52k - OdiaGenAI/gpt-teacher-roleplay-odia-3k - HydraIndicLM/punjabi_alpaca_52K - HydraIndicLM/bengali_alpaca_dolly_67k - abhinand/tamil-alpaca - Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized --- # MISHANM/Multilingual_Llama-3-8B-Instruct This model is fine-tuned for Multi languages , capable of answering queries and translating text from English to Multiple languages . It leverages advanced natural language processing techniques to provide accurate and context-aware responses. ## Model Details This model is based on meta-llama/Llama-3.2-3B-Instruct and has been LoRA finetuned on Multi language datasets: 1. Gujarati 2. Kannada 3. Hindi 4. Odia 5. Punjabi 6. Bengali 7. Tamil 8. Telugu # Training Details The model is trained on approx 321K instruction samples. 1. GPUs: 2*AMD Instinctâ„¢ MI210 Accelerators ## Inference with HuggingFace ```python3 import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Set the device device = "cuda" if torch.cuda.is_available() else "cpu" # Load the fine-tuned model and tokenizer model_path = "MISHANM/Multilingual_Llama-3-8B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_path) # Wrap the model with DataParallel if multiple GPUs are available if torch.cuda.device_count() > 1: print(f"Using {torch.cuda.device_count()} GPUs") model = torch.nn.DataParallel(model) # Move the model to the appropriate device model.to(device) tokenizer = AutoTokenizer.from_pretrained(model_path) # Function to generate text def generate_text(prompt, max_length=1000, temperature=0.9): # Format the prompt according to the chat template messages = [ { "role": "system", "content": "You are a language expert and linguist, with same knowledge give response in ().", #In place of "()" write your desired language in which response is required. ", }, {"role": "user", "content": prompt} ] # Apply the chat template formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>" # Tokenize and generate output inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) output = model.module.generate( # Use model.module for DataParallel **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True ) return tokenizer.decode(output[0], skip_special_tokens=True) # Example usage prompt = """Write a story about LLM .""" translated_text = generate_text(prompt) print(translated_text) ``` ## Citation Information ``` @misc{MISHANM/Multilingual_Llama-3-8B-Instruct, author = {Mishan Maurya}, title = {Introducing Fine Tuned LLM for Indic Languages}, year = {2024}, publisher = {Hugging Face}, journal = {Hugging Face repository}, } ``` - PEFT 0.12.0