File size: 2,657 Bytes
6e1dffa 2ea1d4a e802b66 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a 6e1dffa 2ea1d4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
datasets:
- Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered
---
# MISHANM/Sindhi_text_generation_Llama3_8B_instruction
This model is fine-tuned for the Sindhi language, capable of answering queries and translating text Between English and Sindhi . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.
## Model Details
1. Language: Sindhi
2. Tasks: Question Answering, Translation (English to Sindhi )
3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct
# Training Details
The model is trained on approx 29K instruction samples.
1. GPUs: 4*AMD Radeon™ PRO V620
## Inference with HuggingFace
```python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Sindhi_text_generation_Llama3_8B_instruction"
model = AutoModelForCausalLM.from_pretrained(model_path)
# Wrap the model with DataParallel if multiple GPUs are available
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs")
model = torch.nn.DataParallel(model)
# Move the model to the appropriate device
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "You are a Sindhi language expert and linguist, with same knowledge give answers in Sindhi language. ",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
output = model.module.generate( # Use model.module for DataParallel
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """Write a poem LLM ."""
translated_text = generate_text(prompt)
print(translated_text)
```
## Citation Information
```
@misc{MISHANM/Sindhi_text_generation_Llama3_8B_instruction,
author = {Mishan Maurya},
title = {Introducing Fine Tuned LLM for Sindhi Language},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
```
- PEFT 0.12.0 |