MISHANM commited on
Commit
52d7491
·
verified ·
1 Parent(s): f3c7bcb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -197
README.md CHANGED
@@ -1,199 +1,124 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model:
3
+ - ibm-granite/granite-vision-3.2-2b
4
  ---
5
+
6
+
7
+ # MISHANM/deepseek-ai_janus-Pro-7B-fp16
8
+
9
+ The MISHANM/ibm-granite-granite-vision-3.2-2b-fp16 model is a sophisticated vision-language model designed for image-to-text generation. It leverages advanced neural architectures to transform visual inputs into coherent textual descriptions.
10
+
11
+ ## Model Details
12
+ 1. Language: English
13
+ 2. Tasks: Imgae to Text Generation
14
+
15
+ ### Model Example output
16
+
17
+ This is the model inference output:
18
+
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66851b2c4461866b07738832/QeQENKNaU9VoaFhYvdXBs.png)
20
+
21
+
22
+ ## Getting Started
23
+
24
+ To begin using the model, ensure you have the necessary dependencies:
25
+
26
+ ```shell
27
+ pip install transformers>=4.49
28
+
29
+ ```
30
+
31
+ ## Use the code below to get started with the model.
32
+
33
+
34
+ Using Gradio
35
+
36
+ ```python
37
+ import gradio as gr
38
+ from transformers import AutoProcessor, AutoModelForVision2Seq
39
+ import torch
40
+ from PIL import Image
41
+
42
+ device = "cuda" if torch.cuda.is_available() else "cpu"
43
+
44
+ model_path = "MISHANM/ibm-granite-granite-vision-3.2-2b-fp16"
45
+ processor = AutoProcessor.from_pretrained(model_path)
46
+ model = AutoModelForVision2Seq.from_pretrained(model_path, ignore_mismatched_sizes=True).to(device)
47
+
48
+
49
+ def process_image_and_prompt(image_path, prompt):
50
+ # Load the image
51
+ image = Image.open(image_path).convert("RGB")
52
+
53
+ # Prepare the conversation input
54
+ conversation = [
55
+ {
56
+ "role": "user",
57
+ "content": [
58
+ {"type": "image", "url": image},
59
+ {"type": "text", "text": prompt},
60
+ ],
61
+ },
62
+ ]
63
+
64
+ # Process the inputs
65
+ inputs = processor.apply_chat_template(
66
+ conversation,
67
+ add_generation_prompt=True,
68
+ tokenize=True,
69
+ return_dict=True,
70
+ return_tensors="pt"
71
+ ).to(device)
72
+
73
+
74
+ # Generate the output
75
+ output = model.generate(**inputs, max_new_tokens=100)
76
+ return processor.decode(output[0], skip_special_tokens=True)
77
+
78
+ # Create the Gradio interface
79
+ iface = gr.Interface(
80
+ fn=process_image_and_prompt,
81
+ inputs=[
82
+ gr.Image(type="filepath", label="Upload Image"),
83
+ gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
84
+ ],
85
+ outputs="text",
86
+ title="Granite Vision: Advanced Image-to-Text Generation Model",
87
+ description="Upload an image and enter a text prompt to get a response from the model."
88
+ )
89
+
90
+ # Launch the Gradio app
91
+ iface.launch(share=True)
92
+
93
+
94
+ ```
95
+
96
+ ## Uses
97
+
98
+ ### Direct Use
99
+
100
+ This model is ideal for converting images into descriptive text, making it valuable for creative projects, content creation, and artistic exploration.
101
+
102
+ ### Out-of-Scope Use
103
+
104
+ The model is not intended for generating explicit or harmful content. It may also face challenges with highly abstract or nonsensical prompts.
105
+
106
+ ## Bias, Risks, and Limitations
107
+
108
+ The model may reflect biases present in its training data, potentially resulting in stereotypical or biased outputs. Users should be aware of these limitations and review generated content for accuracy and appropriateness.
109
+
110
+ ### Recommendations
111
+
112
+ Users are encouraged to critically evaluate the model's outputs, especially in sensitive contexts, to ensure they meet the desired standards of accuracy and appropriateness.
113
+
114
+ ## Citation Information
115
+ ```
116
+ @misc{MISHANM/ibm-granite-granite-vision-3.2-2b-fp16,
117
+ author = {Mishan Maurya},
118
+ title = {Introducing Image to Text Generation model},
119
+ year = {2025},
120
+ publisher = {Hugging Face},
121
+ journal = {Hugging Face repository},
122
+
123
+ }
124
+ ```