update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: AraBERT_token_classification__AraEval24_fixed
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# AraBERT_token_classification__AraEval24_fixed
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [aubmindlab/bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8758
|
22 |
+
- Precision: 0.0901
|
23 |
+
- Recall: 0.0234
|
24 |
+
- F1: 0.0371
|
25 |
+
- Accuracy: 0.8606
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| 0.6563 | 1.0 | 2851 | 0.7705 | 0.0391 | 0.0006 | 0.0012 | 0.8632 |
|
57 |
+
| 0.5865 | 2.0 | 5702 | 0.8071 | 0.0909 | 0.0028 | 0.0055 | 0.8636 |
|
58 |
+
| 0.5382 | 3.0 | 8553 | 0.7815 | 0.0578 | 0.0012 | 0.0024 | 0.8634 |
|
59 |
+
| 0.5043 | 4.0 | 11404 | 0.7883 | 0.0798 | 0.0021 | 0.0041 | 0.8633 |
|
60 |
+
| 0.4445 | 5.0 | 14255 | 0.8188 | 0.0801 | 0.0031 | 0.0060 | 0.8637 |
|
61 |
+
| 0.4295 | 6.0 | 17106 | 0.8070 | 0.0877 | 0.0155 | 0.0263 | 0.8610 |
|
62 |
+
| 0.4096 | 7.0 | 19957 | 0.8184 | 0.0949 | 0.0135 | 0.0236 | 0.8627 |
|
63 |
+
| 0.3827 | 8.0 | 22808 | 0.8362 | 0.0818 | 0.0181 | 0.0296 | 0.8600 |
|
64 |
+
| 0.3525 | 9.0 | 25659 | 0.8458 | 0.0893 | 0.0254 | 0.0395 | 0.8599 |
|
65 |
+
| 0.3434 | 10.0 | 28510 | 0.8758 | 0.0901 | 0.0234 | 0.0371 | 0.8606 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.30.2
|
71 |
+
- Pytorch 1.12.1
|
72 |
+
- Datasets 2.13.2
|
73 |
+
- Tokenizers 0.13.3
|