First model from Deep RL Course
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 274.29 +/- 19.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fca15283670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca15283700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca15283790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca15283820>", "_build": "<function ActorCriticPolicy._build at 0x7fca152838b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fca15283940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca152839d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca15283a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fca15283af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca15283b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca15283c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca15283ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fca152815d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673789527860304342, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZvEz4GC5c/fGGUPtEL5b7uSI4+QqrUPQAAAAAAAAAAMyeqO4Wxk7t+BMG6ZpN+PJSezjzdhVq9AACAPwAAgD+aLie95bi6PgmMij3CVKG+LdsAPAskhT0AAAAAAAAAAJOrZj7bXUY/IEL/vez9t744IBU+apkGvgAAAAAAAAAAc6m8PQ252j663+m+U07BviU/7L1qnTa9AAAAAAAAAAAAuZM8KfhduqoLRzqxmPi4rDfBOluWV7kAAIA/AACAPzNf1rz2NGW600fCsmRCXLA+nBW6Pw8QMwAAgD8AAIA/mgm8OjEUqT86vs47u0DyvuvqBD01qvw8AAAAAAAAAAAtezg+csZxPzZobz5APLe+XqSlPm+VCD0AAAAAAAAAAIDoHr1S00U+zzQIPsdeir5Q8jE9vECFPQAAAAAAAAAApvS9vbWxrz5lzuY9AUdhvm4W+btQPJE8AAAAAAAAAAAzdZg9j14SuuJ9cTInxvKwzSjhuhub0bIAAIA/AACAP9pYnT2fSoU+j4g/vjl4m77JbE+9ogFmvQAAAAAAAAAADQOTvRo2qj5mwmw+15aQvlrCsD2rALw9AAAAAAAAAABm1qK7yTEZPsjKUb05Gpa+dhAfvJEXML0AAAAAAAAAAM0kZrxDbRi8WdgvvJ45lzyKAIK9Srd6PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg/jAjv8vc0CUhpRSlIwBbJRL9IwBdJRHQK3BVVhkRSR1fZQoaAZoCWgPQwjayHVTivlwQJSGlFKUaBVNAAFoFkdArcFbV6NVBHV9lChoBmgJaA9DCACuZMdGDDFAlIaUUpRoFUvLaBZHQK3ByfzSThZ1fZQoaAZoCWgPQwgz+Wab23RxQJSGlFKUaBVL8mgWR0Ctwdbx/d6+dX2UKGgGaAloD0MIABqlSz/ZcUCUhpRSlGgVS/hoFkdArcIJSzgMt3V9lChoBmgJaA9DCIc2ABsQbnJAlIaUUpRoFUv2aBZHQK3CEPo3aSN1fZQoaAZoCWgPQwiyKsJNRupyQJSGlFKUaBVL7mgWR0Ctwi+hPCVKdX2UKGgGaAloD0MIzhYQWo/acUCUhpRSlGgVTSwBaBZHQK3CSHmA9V51fZQoaAZoCWgPQwiymxn9aO5zQJSGlFKUaBVNNQFoFkdArcKYI2OyV3V9lChoBmgJaA9DCATo9/3b5HBAlIaUUpRoFUvdaBZHQK3CufjjrAx1fZQoaAZoCWgPQwiQ9GkV/a5zQJSGlFKUaBVL9mgWR0CtwsnKW9lFdX2UKGgGaAloD0MI3KD2WzvqbkCUhpRSlGgVS/xoFkdArcMz3VTaTXV9lChoBmgJaA9DCPIIbqQs9nJAlIaUUpRoFU0AAWgWR0Ctw13j2i+MdX2UKGgGaAloD0MI/RTHgRcEckCUhpRSlGgVS+BoFkdArcNoUtZmqnV9lChoBmgJaA9DCApMp3VbsHJAlIaUUpRoFU0VAWgWR0Ctw41K5CnhdX2UKGgGaAloD0MIxHdi1oupUUCUhpRSlGgVS9hoFkdArcPEJQcghnV9lChoBmgJaA9DCB2qKcm6unNAlIaUUpRoFUv/aBZHQK3EKgjhUBJ1fZQoaAZoCWgPQwh5P26/PORyQJSGlFKUaBVNFgFoFkdArcSPko4MnnV9lChoBmgJaA9DCNwODYtRbXJAlIaUUpRoFUvvaBZHQK3EyyfL9uR1fZQoaAZoCWgPQwiUT49tGZZxQJSGlFKUaBVL72gWR0CtxNMEaESNdX2UKGgGaAloD0MIRdrGn6hLcUCUhpRSlGgVTQABaBZHQK3E00dBBzF1fZQoaAZoCWgPQwhPsWoQ5qpyQJSGlFKUaBVNCgFoFkdArcTmI9C/oXV9lChoBmgJaA9DCBkfZi9bkG9AlIaUUpRoFUvzaBZHQK3E/ytFKCh1fZQoaAZoCWgPQwj/kenQae5sQJSGlFKUaBVL7GgWR0CtxQEpAlfJdX2UKGgGaAloD0MIwRvSqMC+UkCUhpRSlGgVS8loFkdArcUeXXyy2XV9lChoBmgJaA9DCA3BcRm3h21AlIaUUpRoFUv7aBZHQK3Fc0gKWs11fZQoaAZoCWgPQwhgd7rzxK5uQJSGlFKUaBVL+GgWR0CtxYwGwA2idX2UKGgGaAloD0MIJJ2BkZc5ckCUhpRSlGgVS+FoFkdArcXw/Vy3kXV9lChoBmgJaA9DCBL3WPqQD3JAlIaUUpRoFUvdaBZHQK3F8MdcSoR1fZQoaAZoCWgPQwh8f4P2aoVwQJSGlFKUaBVL92gWR0CtxgL92ovSdX2UKGgGaAloD0MIByP2CSDBcUCUhpRSlGgVS/hoFkdArcZdqtYCAHV9lChoBmgJaA9DCBY0LbEyEXBAlIaUUpRoFUvvaBZHQK3Ge7tAs051fZQoaAZoCWgPQwiwPbMkgKVxQJSGlFKUaBVL2mgWR0Ctxp0GeMAFdX2UKGgGaAloD0MIhgMhWcCUbUCUhpRSlGgVS+poFkdArcdkSAYpD3V9lChoBmgJaA9DCLOXbactcW9AlIaUUpRoFUvuaBZHQK3QliNKh+R1fZQoaAZoCWgPQwgYlj/fFh1xQJSGlFKUaBVL8mgWR0Ct0LgWBSUDdX2UKGgGaAloD0MIY+yEl6DQckCUhpRSlGgVS+BoFkdArdC/tF8XvnV9lChoBmgJaA9DCBSSzOqdMHJAlIaUUpRoFU0RAWgWR0Ct0MvrGBFvdX2UKGgGaAloD0MIBr6iW286cUCUhpRSlGgVTQUBaBZHQK3Q4Dxsl9l1fZQoaAZoCWgPQwjsia4Lf6ZxQJSGlFKUaBVL9mgWR0Ct0N9onKGMdX2UKGgGaAloD0MIWFTE6aR9c0CUhpRSlGgVS9hoFkdArdEAmiQDFXV9lChoBmgJaA9DCDSAt0ACKnFAlIaUUpRoFU02AWgWR0Ct0YgpjMFEdX2UKGgGaAloD0MI56ij46o9cECUhpRSlGgVS/ZoFkdArdHZ4bCJoHV9lChoBmgJaA9DCAsnaf6YgHFAlIaUUpRoFU0kAWgWR0Ct0ffUe+23dX2UKGgGaAloD0MI7Pma5bIhcECUhpRSlGgVTQkBaBZHQK3SFvaURnR1fZQoaAZoCWgPQwg6XRYTm9pvQJSGlFKUaBVNAwFoFkdArdIadhAnlXV9lChoBmgJaA9DCB1WuOVjqHFAlIaUUpRoFUvraBZHQK3SNj9XLeR1fZQoaAZoCWgPQwiAuoECb3FxQJSGlFKUaBVL1mgWR0Ct0jxFI/Z/dX2UKGgGaAloD0MIM2yU9duDcUCUhpRSlGgVTQ0BaBZHQK3Sq8tf5UN1fZQoaAZoCWgPQwi7KlCLgfJzQJSGlFKUaBVL82gWR0Ct013r2QGOdX2UKGgGaAloD0MIfsnGg+26cECUhpRSlGgVS/loFkdArdOYu27Wd3V9lChoBmgJaA9DCGgj103pdHJAlIaUUpRoFUvtaBZHQK3TnHSWqtJ1fZQoaAZoCWgPQwgmOsssgiJxQJSGlFKUaBVNEwFoFkdArdO6z9jwx3V9lChoBmgJaA9DCKQczCbA2G9AlIaUUpRoFU0XAWgWR0Ct1Ae0G/vfdX2UKGgGaAloD0MI7kJzncawb0CUhpRSlGgVTQYBaBZHQK3UIymALAp1fZQoaAZoCWgPQwjBkUCDTXVxQJSGlFKUaBVNHwFoFkdArdQ0K9f1H3V9lChoBmgJaA9DCEWfjzJio3BAlIaUUpRoFU0hAWgWR0Ct1E+NDMNddX2UKGgGaAloD0MI4gSm0/pscUCUhpRSlGgVTQEBaBZHQK3UsYwZflZ1fZQoaAZoCWgPQwhe9YB5iEFyQJSGlFKUaBVL7GgWR0Ct1MIakyk9dX2UKGgGaAloD0MIHzF6bqHEbkCUhpRSlGgVS/RoFkdArdUUS7GvOnV9lChoBmgJaA9DCFtc4zNZ1XFAlIaUUpRoFUvvaBZHQK3VJw8W9Dh1fZQoaAZoCWgPQwiNX3glyQduQJSGlFKUaBVL+2gWR0Ct1SyYw7DEdX2UKGgGaAloD0MI8wGBziRYb0CUhpRSlGgVS/BoFkdArdUx2OhkAnV9lChoBmgJaA9DCARWDi2yqWxAlIaUUpRoFU0iAWgWR0Ct1XT/Q0GedX2UKGgGaAloD0MIRP0ubI0Jc0CUhpRSlGgVTQEBaBZHQK3Vys4ku6F1fZQoaAZoCWgPQwhLAz+qIa9xQJSGlFKUaBVNAAFoFkdArdZxUrCm/HV9lChoBmgJaA9DCINOCB30InBAlIaUUpRoFUv9aBZHQK3Wo3Ytg8d1fZQoaAZoCWgPQwjgY7DiVCRwQJSGlFKUaBVL4WgWR0Ct1tV+Zw4sdX2UKGgGaAloD0MI9P4/Thh3cUCUhpRSlGgVTRUBaBZHQK3W8IoE0SB1fZQoaAZoCWgPQwgxXvOqjqtzQJSGlFKUaBVL/GgWR0Ct1wgDJU5udX2UKGgGaAloD0MIDJHT1zMAcECUhpRSlGgVS+toFkdArdcVcMVk+XV9lChoBmgJaA9DCLKhm/3Bz3BAlIaUUpRoFUv5aBZHQK3XFamoBJZ1fZQoaAZoCWgPQwikN9xHbtZwQJSGlFKUaBVNFgFoFkdArdcVGG21D3V9lChoBmgJaA9DCGTmApfHFG9AlIaUUpRoFUv/aBZHQK3Xt9If8uV1fZQoaAZoCWgPQwgeb/JbdEpuQJSGlFKUaBVL6GgWR0Ct1+P1ct5EdX2UKGgGaAloD0MIF9nO99NkcECUhpRSlGgVS/doFkdArdgNUCJXQ3V9lChoBmgJaA9DCEZ9kjtszXBAlIaUUpRoFU0IAWgWR0Ct2Cl/H5rQdX2UKGgGaAloD0MI2nIuxVWcbECUhpRSlGgVTTIBaBZHQK3YRjpcHGF1fZQoaAZoCWgPQwiEukihrOlsQJSGlFKUaBVNEgFoFkdArdhWqxTsIHV9lChoBmgJaA9DCNwr81ZdjHJAlIaUUpRoFUv1aBZHQK3YWblRxcV1fZQoaAZoCWgPQwjI7236M+pyQJSGlFKUaBVL6WgWR0Ct2IhUBGQTdX2UKGgGaAloD0MIIxPwa+SWckCUhpRSlGgVS+NoFkdArdlIRGtp23V9lChoBmgJaA9DCLAe961W83JAlIaUUpRoFUvYaBZHQK3ZkvugHu91fZQoaAZoCWgPQwjJA5FFmjVzQJSGlFKUaBVL7WgWR0Ct2ZnAZbY9dX2UKGgGaAloD0MI0CueemTqcECUhpRSlGgVTRMBaBZHQK3ZtKvmozh1fZQoaAZoCWgPQwhe91YkphNwQJSGlFKUaBVL7GgWR0Ct2cRr8BMjdX2UKGgGaAloD0MIVfZdEbwbc0CUhpRSlGgVS/ZoFkdArdnMu8K5TnV9lChoBmgJaA9DCNUhN8MNR3FAlIaUUpRoFUvtaBZHQK3Z0xY7q6h1fZQoaAZoCWgPQwgdcjPcgKlwQJSGlFKUaBVNAQFoFkdArdoEDdP+GXV9lChoBmgJaA9DCLeYnxvaAnNAlIaUUpRoFU0DAWgWR0Ct2qg7HQyAdX2UKGgGaAloD0MIfuNrz+w9cUCUhpRSlGgVS/doFkdArdqwIUrTY3V9lChoBmgJaA9DCH7Er1jDS0FAlIaUUpRoFUvAaBZHQK3av5wfhdd1fZQoaAZoCWgPQwiWkuUkVDJzQJSGlFKUaBVL8GgWR0Ct2sIInjQzdX2UKGgGaAloD0MICOV9HE2pcUCUhpRSlGgVS/FoFkdArdsLkU9IPXV9lChoBmgJaA9DCC9QUmABZXFAlIaUUpRoFU0IAWgWR0Ct2zZavA45dX2UKGgGaAloD0MI+zpwzsjvcECUhpRSlGgVTRQBaBZHQK3bOxiXpnp1fZQoaAZoCWgPQwiXH7jKU+9xQJSGlFKUaBVNIwFoFkdArduOaz/p+3V9lChoBmgJaA9DCIxn0ND/CXFAlIaUUpRoFUvvaBZHQK3b7zV+Zw51fZQoaAZoCWgPQwiSWFLufi9zQJSGlFKUaBVLzWgWR0Ct3BAM+eOGdX2UKGgGaAloD0MI64uEthyTcECUhpRSlGgVS+NoFkdArdwSmIj4YnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05594f28c0a99fe405b81be850d0a8478ea9c825b51b5c4120ece40a64f100ff
|
3 |
+
size 147340
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fca15283670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fca15283700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fca15283790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fca15283820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fca152838b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fca15283940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fca152839d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fca15283a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fca15283af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fca15283b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fca15283c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fca15283ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fca152815d0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673789527860304342,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEZvEz4GC5c/fGGUPtEL5b7uSI4+QqrUPQAAAAAAAAAAMyeqO4Wxk7t+BMG6ZpN+PJSezjzdhVq9AACAPwAAgD+aLie95bi6PgmMij3CVKG+LdsAPAskhT0AAAAAAAAAAJOrZj7bXUY/IEL/vez9t744IBU+apkGvgAAAAAAAAAAc6m8PQ252j663+m+U07BviU/7L1qnTa9AAAAAAAAAAAAuZM8KfhduqoLRzqxmPi4rDfBOluWV7kAAIA/AACAPzNf1rz2NGW600fCsmRCXLA+nBW6Pw8QMwAAgD8AAIA/mgm8OjEUqT86vs47u0DyvuvqBD01qvw8AAAAAAAAAAAtezg+csZxPzZobz5APLe+XqSlPm+VCD0AAAAAAAAAAIDoHr1S00U+zzQIPsdeir5Q8jE9vECFPQAAAAAAAAAApvS9vbWxrz5lzuY9AUdhvm4W+btQPJE8AAAAAAAAAAAzdZg9j14SuuJ9cTInxvKwzSjhuhub0bIAAIA/AACAP9pYnT2fSoU+j4g/vjl4m77JbE+9ogFmvQAAAAAAAAAADQOTvRo2qj5mwmw+15aQvlrCsD2rALw9AAAAAAAAAABm1qK7yTEZPsjKUb05Gpa+dhAfvJEXML0AAAAAAAAAAM0kZrxDbRi8WdgvvJ45lzyKAIK9Srd6PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg/jAjv8vc0CUhpRSlIwBbJRL9IwBdJRHQK3BVVhkRSR1fZQoaAZoCWgPQwjayHVTivlwQJSGlFKUaBVNAAFoFkdArcFbV6NVBHV9lChoBmgJaA9DCACuZMdGDDFAlIaUUpRoFUvLaBZHQK3ByfzSThZ1fZQoaAZoCWgPQwgz+Wab23RxQJSGlFKUaBVL8mgWR0Ctwdbx/d6+dX2UKGgGaAloD0MIABqlSz/ZcUCUhpRSlGgVS/hoFkdArcIJSzgMt3V9lChoBmgJaA9DCIc2ABsQbnJAlIaUUpRoFUv2aBZHQK3CEPo3aSN1fZQoaAZoCWgPQwiyKsJNRupyQJSGlFKUaBVL7mgWR0Ctwi+hPCVKdX2UKGgGaAloD0MIzhYQWo/acUCUhpRSlGgVTSwBaBZHQK3CSHmA9V51fZQoaAZoCWgPQwiymxn9aO5zQJSGlFKUaBVNNQFoFkdArcKYI2OyV3V9lChoBmgJaA9DCATo9/3b5HBAlIaUUpRoFUvdaBZHQK3CufjjrAx1fZQoaAZoCWgPQwiQ9GkV/a5zQJSGlFKUaBVL9mgWR0CtwsnKW9lFdX2UKGgGaAloD0MI3KD2WzvqbkCUhpRSlGgVS/xoFkdArcMz3VTaTXV9lChoBmgJaA9DCPIIbqQs9nJAlIaUUpRoFU0AAWgWR0Ctw13j2i+MdX2UKGgGaAloD0MI/RTHgRcEckCUhpRSlGgVS+BoFkdArcNoUtZmqnV9lChoBmgJaA9DCApMp3VbsHJAlIaUUpRoFU0VAWgWR0Ctw41K5CnhdX2UKGgGaAloD0MIxHdi1oupUUCUhpRSlGgVS9hoFkdArcPEJQcghnV9lChoBmgJaA9DCB2qKcm6unNAlIaUUpRoFUv/aBZHQK3EKgjhUBJ1fZQoaAZoCWgPQwh5P26/PORyQJSGlFKUaBVNFgFoFkdArcSPko4MnnV9lChoBmgJaA9DCNwODYtRbXJAlIaUUpRoFUvvaBZHQK3EyyfL9uR1fZQoaAZoCWgPQwiUT49tGZZxQJSGlFKUaBVL72gWR0CtxNMEaESNdX2UKGgGaAloD0MIRdrGn6hLcUCUhpRSlGgVTQABaBZHQK3E00dBBzF1fZQoaAZoCWgPQwhPsWoQ5qpyQJSGlFKUaBVNCgFoFkdArcTmI9C/oXV9lChoBmgJaA9DCBkfZi9bkG9AlIaUUpRoFUvzaBZHQK3E/ytFKCh1fZQoaAZoCWgPQwj/kenQae5sQJSGlFKUaBVL7GgWR0CtxQEpAlfJdX2UKGgGaAloD0MIwRvSqMC+UkCUhpRSlGgVS8loFkdArcUeXXyy2XV9lChoBmgJaA9DCA3BcRm3h21AlIaUUpRoFUv7aBZHQK3Fc0gKWs11fZQoaAZoCWgPQwhgd7rzxK5uQJSGlFKUaBVL+GgWR0CtxYwGwA2idX2UKGgGaAloD0MIJJ2BkZc5ckCUhpRSlGgVS+FoFkdArcXw/Vy3kXV9lChoBmgJaA9DCBL3WPqQD3JAlIaUUpRoFUvdaBZHQK3F8MdcSoR1fZQoaAZoCWgPQwh8f4P2aoVwQJSGlFKUaBVL92gWR0CtxgL92ovSdX2UKGgGaAloD0MIByP2CSDBcUCUhpRSlGgVS/hoFkdArcZdqtYCAHV9lChoBmgJaA9DCBY0LbEyEXBAlIaUUpRoFUvvaBZHQK3Ge7tAs051fZQoaAZoCWgPQwiwPbMkgKVxQJSGlFKUaBVL2mgWR0Ctxp0GeMAFdX2UKGgGaAloD0MIhgMhWcCUbUCUhpRSlGgVS+poFkdArcdkSAYpD3V9lChoBmgJaA9DCLOXbactcW9AlIaUUpRoFUvuaBZHQK3QliNKh+R1fZQoaAZoCWgPQwgYlj/fFh1xQJSGlFKUaBVL8mgWR0Ct0LgWBSUDdX2UKGgGaAloD0MIY+yEl6DQckCUhpRSlGgVS+BoFkdArdC/tF8XvnV9lChoBmgJaA9DCBSSzOqdMHJAlIaUUpRoFU0RAWgWR0Ct0MvrGBFvdX2UKGgGaAloD0MIBr6iW286cUCUhpRSlGgVTQUBaBZHQK3Q4Dxsl9l1fZQoaAZoCWgPQwjsia4Lf6ZxQJSGlFKUaBVL9mgWR0Ct0N9onKGMdX2UKGgGaAloD0MIWFTE6aR9c0CUhpRSlGgVS9hoFkdArdEAmiQDFXV9lChoBmgJaA9DCDSAt0ACKnFAlIaUUpRoFU02AWgWR0Ct0YgpjMFEdX2UKGgGaAloD0MI56ij46o9cECUhpRSlGgVS/ZoFkdArdHZ4bCJoHV9lChoBmgJaA9DCAsnaf6YgHFAlIaUUpRoFU0kAWgWR0Ct0ffUe+23dX2UKGgGaAloD0MI7Pma5bIhcECUhpRSlGgVTQkBaBZHQK3SFvaURnR1fZQoaAZoCWgPQwg6XRYTm9pvQJSGlFKUaBVNAwFoFkdArdIadhAnlXV9lChoBmgJaA9DCB1WuOVjqHFAlIaUUpRoFUvraBZHQK3SNj9XLeR1fZQoaAZoCWgPQwiAuoECb3FxQJSGlFKUaBVL1mgWR0Ct0jxFI/Z/dX2UKGgGaAloD0MIM2yU9duDcUCUhpRSlGgVTQ0BaBZHQK3Sq8tf5UN1fZQoaAZoCWgPQwi7KlCLgfJzQJSGlFKUaBVL82gWR0Ct013r2QGOdX2UKGgGaAloD0MIfsnGg+26cECUhpRSlGgVS/loFkdArdOYu27Wd3V9lChoBmgJaA9DCGgj103pdHJAlIaUUpRoFUvtaBZHQK3TnHSWqtJ1fZQoaAZoCWgPQwgmOsssgiJxQJSGlFKUaBVNEwFoFkdArdO6z9jwx3V9lChoBmgJaA9DCKQczCbA2G9AlIaUUpRoFU0XAWgWR0Ct1Ae0G/vfdX2UKGgGaAloD0MI7kJzncawb0CUhpRSlGgVTQYBaBZHQK3UIymALAp1fZQoaAZoCWgPQwjBkUCDTXVxQJSGlFKUaBVNHwFoFkdArdQ0K9f1H3V9lChoBmgJaA9DCEWfjzJio3BAlIaUUpRoFU0hAWgWR0Ct1E+NDMNddX2UKGgGaAloD0MI4gSm0/pscUCUhpRSlGgVTQEBaBZHQK3UsYwZflZ1fZQoaAZoCWgPQwhe9YB5iEFyQJSGlFKUaBVL7GgWR0Ct1MIakyk9dX2UKGgGaAloD0MIHzF6bqHEbkCUhpRSlGgVS/RoFkdArdUUS7GvOnV9lChoBmgJaA9DCFtc4zNZ1XFAlIaUUpRoFUvvaBZHQK3VJw8W9Dh1fZQoaAZoCWgPQwiNX3glyQduQJSGlFKUaBVL+2gWR0Ct1SyYw7DEdX2UKGgGaAloD0MI8wGBziRYb0CUhpRSlGgVS/BoFkdArdUx2OhkAnV9lChoBmgJaA9DCARWDi2yqWxAlIaUUpRoFU0iAWgWR0Ct1XT/Q0GedX2UKGgGaAloD0MIRP0ubI0Jc0CUhpRSlGgVTQEBaBZHQK3Vys4ku6F1fZQoaAZoCWgPQwhLAz+qIa9xQJSGlFKUaBVNAAFoFkdArdZxUrCm/HV9lChoBmgJaA9DCINOCB30InBAlIaUUpRoFUv9aBZHQK3Wo3Ytg8d1fZQoaAZoCWgPQwjgY7DiVCRwQJSGlFKUaBVL4WgWR0Ct1tV+Zw4sdX2UKGgGaAloD0MI9P4/Thh3cUCUhpRSlGgVTRUBaBZHQK3W8IoE0SB1fZQoaAZoCWgPQwgxXvOqjqtzQJSGlFKUaBVL/GgWR0Ct1wgDJU5udX2UKGgGaAloD0MIDJHT1zMAcECUhpRSlGgVS+toFkdArdcVcMVk+XV9lChoBmgJaA9DCLKhm/3Bz3BAlIaUUpRoFUv5aBZHQK3XFamoBJZ1fZQoaAZoCWgPQwikN9xHbtZwQJSGlFKUaBVNFgFoFkdArdcVGG21D3V9lChoBmgJaA9DCGTmApfHFG9AlIaUUpRoFUv/aBZHQK3Xt9If8uV1fZQoaAZoCWgPQwgeb/JbdEpuQJSGlFKUaBVL6GgWR0Ct1+P1ct5EdX2UKGgGaAloD0MIF9nO99NkcECUhpRSlGgVS/doFkdArdgNUCJXQ3V9lChoBmgJaA9DCEZ9kjtszXBAlIaUUpRoFU0IAWgWR0Ct2Cl/H5rQdX2UKGgGaAloD0MI2nIuxVWcbECUhpRSlGgVTTIBaBZHQK3YRjpcHGF1fZQoaAZoCWgPQwiEukihrOlsQJSGlFKUaBVNEgFoFkdArdhWqxTsIHV9lChoBmgJaA9DCNwr81ZdjHJAlIaUUpRoFUv1aBZHQK3YWblRxcV1fZQoaAZoCWgPQwjI7236M+pyQJSGlFKUaBVL6WgWR0Ct2IhUBGQTdX2UKGgGaAloD0MIIxPwa+SWckCUhpRSlGgVS+NoFkdArdlIRGtp23V9lChoBmgJaA9DCLAe961W83JAlIaUUpRoFUvYaBZHQK3ZkvugHu91fZQoaAZoCWgPQwjJA5FFmjVzQJSGlFKUaBVL7WgWR0Ct2ZnAZbY9dX2UKGgGaAloD0MI0CueemTqcECUhpRSlGgVTRMBaBZHQK3ZtKvmozh1fZQoaAZoCWgPQwhe91YkphNwQJSGlFKUaBVL7GgWR0Ct2cRr8BMjdX2UKGgGaAloD0MIVfZdEbwbc0CUhpRSlGgVS/ZoFkdArdnMu8K5TnV9lChoBmgJaA9DCNUhN8MNR3FAlIaUUpRoFUvtaBZHQK3Z0xY7q6h1fZQoaAZoCWgPQwgdcjPcgKlwQJSGlFKUaBVNAQFoFkdArdoEDdP+GXV9lChoBmgJaA9DCLeYnxvaAnNAlIaUUpRoFU0DAWgWR0Ct2qg7HQyAdX2UKGgGaAloD0MIfuNrz+w9cUCUhpRSlGgVS/doFkdArdqwIUrTY3V9lChoBmgJaA9DCH7Er1jDS0FAlIaUUpRoFUvAaBZHQK3av5wfhdd1fZQoaAZoCWgPQwiWkuUkVDJzQJSGlFKUaBVL8GgWR0Ct2sIInjQzdX2UKGgGaAloD0MICOV9HE2pcUCUhpRSlGgVS/FoFkdArdsLkU9IPXV9lChoBmgJaA9DCC9QUmABZXFAlIaUUpRoFU0IAWgWR0Ct2zZavA45dX2UKGgGaAloD0MI+zpwzsjvcECUhpRSlGgVTRQBaBZHQK3bOxiXpnp1fZQoaAZoCWgPQwiXH7jKU+9xQJSGlFKUaBVNIwFoFkdArduOaz/p+3V9lChoBmgJaA9DCIxn0ND/CXFAlIaUUpRoFUvvaBZHQK3b7zV+Zw51fZQoaAZoCWgPQwiSWFLufi9zQJSGlFKUaBVLzWgWR0Ct3BAM+eOGdX2UKGgGaAloD0MI64uEthyTcECUhpRSlGgVS+NoFkdArdwSmIj4YnVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 496,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc7bb54a1e924c02348533090af687a8a58ff35a4d2a88cdd0ab3cc8b8bf5e06
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef589cd7a4281a1f2bd75e2f42c25bcb109499169be7bc0970a884af914f7c22
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (207 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 274.2896591410273, "std_reward": 19.338496190237887, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T13:55:37.325155"}
|