Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 271.31 +/- 21.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dbbb84328c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dbbb8432950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dbbb84329e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dbbb8432a70>", "_build": "<function ActorCriticPolicy._build at 0x7dbbb8432b00>", "forward": "<function ActorCriticPolicy.forward at 0x7dbbb8432b90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dbbb8432c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dbbb8432cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7dbbb8432d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dbbb8432dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dbbb8432e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dbbb8432ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dbbb842f2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692013607392072190, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNfp7txcbc/UUSEvgdV9j5tEsA7SzttPQAAAAAAAAAAmpr0PBQEr7qebmG1rY4LsLH4kri6oZY0AACAPwAAgD/gnyw++qq3P/wzED+fS56+xE65PWutmD4AAAAAAAAAADOTqz32ZAK6cnOJuxfAILYWkuA7PnqkOgAAgD8AAAAAmhvYPP9Yuj/CDOI+UlWIPvSSqLzVd3y9AAAAAAAAAACa6d+7rru2PwqIrr49Irc+bWPPO2qlPj0AAAAAAAAAAMZLAb56rGg/vW+vPYxKr75O+E69FN4CPgAAAAAAAAAAAHDDO3siq7oCNUmz5DKzL23iTDpQK8AzAACAPwAAgD+zXTm9SBGUvB2uir1s15m9vsvRPTofnj4AAIA/AACAP9oqqT2uPZq6KPstO9CVijZK4A86duyBNQAAgD8AAAAA85e6vQUGnruu4Ii8bBYoPd43+TxJhwq+AAAAAAAAgD/NCjy8ON3sPIbAiL1E7G2+ovVjvQq8FT0AAAAAAAAAAA26OL43ljE/NV4GPsX9lb4aLjO+7uFaPgAAAAAAAAAAZqhWvNuatT2j31O+TBpyvpHNzL0V5Cy9AAAAAAAAAABmZ3I9r5l8P3Q+szx1UeG+Xo/nPdLhOL0AAAAAAAAAAI24lr32pHO6wGVON+06mTIVgN06+q1vtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9KGhmGucOMAWyUTe0CjAF0lEdAliQ4Ui6g/XV9lChoBkdAcBbHS4OMEWgHTfQBaAhHQJYltqqOtGN1fZQoaAZHQHIiJM6BAfNoB015AmgIR0CWJdxkd3jddX2UKGgGR0BsJtzZHuqnaAdNvAJoCEdAliap6Uqx1XV9lChoBkdAccv/ATIvJ2gHTfYBaAhHQJYnYfkmx+t1fZQoaAZHQG4VZof0VahoB00kAmgIR0CWKDnZCfHxdX2UKGgGR0Bs/pPqLS/kaAdNhwJoCEdAlinsLWqcVnV9lChoBkdAcRdvMKTjemgHTdECaAhHQJYqz6N2ki51fZQoaAZHQG/XHWSU1Q9oB02QAWgIR0CWKxOwgTysdX2UKGgGR0BK+skpqh11aAdLwGgIR0CWLSWRigCfdX2UKGgGR0BnEjKDCgscaAdN6ANoCEdAlkhRsQ/X5HV9lChoBkdAb9DwIdELIGgHTSMBaAhHQJZJdb/wRXh1fZQoaAZHQBzQKfFrEcdoB0vcaAhHQJZK2VTrE+B1fZQoaAZHQFAUNA1NxlxoB0vcaAhHQJZLT5AQg9x1fZQoaAZHQG/hAYgq3E1oB02VAmgIR0CWTE5GBnSOdX2UKGgGR0Bs6lhmXgLraAdNWgFoCEdAlkxz67/XG3V9lChoBkdAYXDcoH9m6GgHTegDaAhHQJZMufUWl/J1fZQoaAZHQG9xiSidrftoB02vAWgIR0CWTNV4HHFQdX2UKGgGR0Bi1Qb0e2d/aAdN6ANoCEdAlk+1Ed/8VHV9lChoBkdAQP/kiliz9mgHS/hoCEdAlk/Xsw+MZXV9lChoBkdAcmeohpxm02gHTZsBaAhHQJZQ3/S6UaB1fZQoaAZHQHDmk7bL2YhoB03FAWgIR0CWUTSwGGEgdX2UKGgGR0BxeBkRSP2gaAdNfQJoCEdAllGQxN7BwnV9lChoBkdAcDGnPVurImgHTcIBaAhHQJZS1hCtzS11fZQoaAZHQHL/NTP0I1NoB02sAmgIR0CWVC2qT8pDdX2UKGgGR0BS2IU8FINFaAdL4WgIR0CWVWCpFTegdX2UKGgGR0Bs++G9HtngaAdNAwFoCEdAllaBuTA31nV9lChoBkdAcS35v99+gGgHTR8BaAhHQJZX3LwF1Sx1fZQoaAZHQHA5qn3ta6loB01XAWgIR0CWWJXYlIEsdX2UKGgGR0Bx8+ivgWJraAdNRgFoCEdAllik/B3zMHV9lChoBkdAcZEwYtQKr2gHTUMCaAhHQJZZKXb/Ot51fZQoaAZHQHEHcotthuxoB02GAWgIR0CWWc/YJ3PidX2UKGgGR0BQ+aqKgqVhaAdLmGgIR0CWWkw/xDsudX2UKGgGR0By0RCx/ustaAdNoAFoCEdAll158rqdH3V9lChoBkdAckpeOXE61mgHTYYBaAhHQJZey5lOGj91fZQoaAZHQHKi0pqh11ZoB01qAWgIR0CWX+k43m3fdX2UKGgGR0Bw2UeOn2qUaAdL/mgIR0CWYX41gpjMdX2UKGgGR0BzAFwAEMb4aAdNKQFoCEdAlmI12Rq46XV9lChoBkdANj8r/bTMJWgHS7xoCEdAlmKhkAggYHV9lChoBkdAcOUORT0g82gHTcUBaAhHQJZjKJGe+VV1fZQoaAZHQHGo2RzRx95oB02ZAWgIR0CWY696Tnq3dX2UKGgGR0BxBgJPZZjhaAdNKwJoCEdAlmYECFK02XV9lChoBkdAcCs7iQ1aXGgHTYcCaAhHQJZmhLeyiVV1fZQoaAZHQHDzGqgh8ploB01WAWgIR0CWZw5u63AmdX2UKGgGR0Bxbg4LkS26aAdNhgFoCEdAlmgq33Hq/3V9lChoBkdAcFLKGL1mJ2gHTSgBaAhHQJZq0rPMSsd1fZQoaAZHQG+/0rK/201oB01WAWgIR0CWa4QQtjCpdX2UKGgGR0BtJIlSjxkNaAdN2QFoCEdAlmwOxGDtgXV9lChoBkdAbJObqhUR4GgHTdMCaAhHQJZuCz2OAAh1fZQoaAZHQHBdOOfdyktoB03tAWgIR0CWbhbR4QjEdX2UKGgGR0BFoGhdt2s8aAdL6GgIR0CWbwVLBbfQdX2UKGgGR0BurSyQgcLjaAdNWQFoCEdAlm8x4Y77sXV9lChoBkdAcSlWPcSGrWgHTWYBaAhHQJZwOEdvKlp1fZQoaAZHQHALVRgqmTFoB015AWgIR0CWhqVWjoIOdX2UKGgGR0Bv6owCbMHKaAdNKwFoCEdAloeby1/lQ3V9lChoBkdAcnsH6/IsAmgHTToBaAhHQJaJHLwF1Sx1fZQoaAZHQG4H/+jua4NoB02QAWgIR0CWiTdFfAsTdX2UKGgGR0BwSjAxi5NHaAdNcAFoCEdAlo1y/XXiBHV9lChoBkdAcAgRXwLE1mgHTSQBaAhHQJaN2UpuuRt1fZQoaAZHQHEDRhDw6QxoB01AAWgIR0CWjjz5XU6QdX2UKGgGR0ByTQ0oBq9HaAdNCQJoCEdAlo5GtlqagHV9lChoBkdAcfN8QZn+Q2gHTS0BaAhHQJaOm6+WWyF1fZQoaAZHQHA9sqSX+l1oB00/AWgIR0CWkOv7WNFSdX2UKGgGR0BBR0tZmqYJaAdL12gIR0CWkgN9YwIudX2UKGgGR0BvNP9ehPCVaAdNQQFoCEdAlpIfi1iON3V9lChoBkdAcs998Z1mrmgHTWsBaAhHQJaSpXOnl4l1fZQoaAZHQHDOopUgjhVoB00lAWgIR0CWky0zj3mFdX2UKGgGR0BxuMfZElVtaAdNKQFoCEdAlpQBS9/SY3V9lChoBkdAcNGwCr92o2gHTZgBaAhHQJaVNVbRne11fZQoaAZHQHEmFLzwtrdoB02aAWgIR0CWlpT987ZGdX2UKGgGR0ByWvLwF1SwaAdNZQFoCEdAlpeS7PIGQnV9lChoBkdAZBS1qnFYMmgHTegDaAhHQJaXkcxTKkl1fZQoaAZHQG6TycCo0hxoB00hAWgIR0CWmQSS/0uldX2UKGgGR0Bya5KjBVMmaAdNJgFoCEdAlpkm8IzFdnV9lChoBkdAb/sRradtmGgHTWABaAhHQJaacBltj1B1fZQoaAZHQHJlK0lZ5iVoB02aA2gIR0CWmoGlhw2mdX2UKGgGR0Bxs9n+Q2deaAdNcAFoCEdAlptb8Jlar3V9lChoBkdAbxcEf1YhdWgHTV4BaAhHQJabhrIo3Jh1fZQoaAZHQEbys5n13+xoB0vFaAhHQJacdzYEnst1fZQoaAZHQHFkAwK0D2doB00RAWgIR0CWnLWQOnVHdX2UKGgGR0Bt2bCzkZJkaAdNIwFoCEdAlpzZLh73PHV9lChoBkdAcvywnpjc22gHTUgBaAhHQJadDBRAKOV1fZQoaAZHQHHaZuIhyKhoB01AAWgIR0CWnaeNDMNddX2UKGgGR0Bve336AOJ+aAdNHQFoCEdAlp4qYNRWLnV9lChoBkdAcgQkqMFUymgHS/xoCEdAlp/WvStvGnV9lChoBkdAcftjSG8Em2gHTXcBaAhHQJagIyEcsDp1fZQoaAZHQHHahU70WdpoB00yAWgIR0CWoMj7Q9iddX2UKGgGR0Bx+UZLqUu+aAdNKQFoCEdAlqK0QkHD8HV9lChoBkdAbwMmXPZ7HGgHTS8BaAhHQJaiy7pV0cR1fZQoaAZHQHE0pz1bqyJoB00FAWgIR0CWo53Ytg8bdX2UKGgGR0BI9fKyOaOQaAdL7mgIR0CWo/eMhougdX2UKGgGR0Bvcvag2606aAdNSgFoCEdAlqUm/8EV33V9lChoBkdAbm8pgCwKSmgHTVoBaAhHQJal0KVpsXV1fZQoaAZHQG/4PQF9roJoB01CAWgIR0CWqZdUbT+edX2UKGgGR0BwahPTG5tnaAdNmAFoCEdAlqmphScbznV9lChoBkdAUffuAqd6LWgHS8NoCEdAlqpka/ATI3V9lChoBkdAcd/FF2FFlWgHTZ0BaAhHQJarpxrBTGZ1fZQoaAZHQHCed52Qnx9oB01OAmgIR0CWrHtMPBi1dX2UKGgGR0ByWLa0x/NJaAdNVgFoCEdAlqyvKdQO4HV9lChoBkdAceyvVEuxr2gHS/5oCEdAlqyuiFj/dnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b44368fd7cc79cb6475e203dfa37398a9eb68a1e633892d06d290ddfba0cd16
|
3 |
+
size 146738
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7dbbb84328c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dbbb8432950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dbbb84329e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dbbb8432a70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7dbbb8432b00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7dbbb8432b90>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7dbbb8432c20>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dbbb8432cb0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7dbbb8432d40>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dbbb8432dd0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dbbb8432e60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7dbbb8432ef0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dbbb842f2c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1692013607392072190,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNfp7txcbc/UUSEvgdV9j5tEsA7SzttPQAAAAAAAAAAmpr0PBQEr7qebmG1rY4LsLH4kri6oZY0AACAPwAAgD/gnyw++qq3P/wzED+fS56+xE65PWutmD4AAAAAAAAAADOTqz32ZAK6cnOJuxfAILYWkuA7PnqkOgAAgD8AAAAAmhvYPP9Yuj/CDOI+UlWIPvSSqLzVd3y9AAAAAAAAAACa6d+7rru2PwqIrr49Irc+bWPPO2qlPj0AAAAAAAAAAMZLAb56rGg/vW+vPYxKr75O+E69FN4CPgAAAAAAAAAAAHDDO3siq7oCNUmz5DKzL23iTDpQK8AzAACAPwAAgD+zXTm9SBGUvB2uir1s15m9vsvRPTofnj4AAIA/AACAP9oqqT2uPZq6KPstO9CVijZK4A86duyBNQAAgD8AAAAA85e6vQUGnruu4Ii8bBYoPd43+TxJhwq+AAAAAAAAgD/NCjy8ON3sPIbAiL1E7G2+ovVjvQq8FT0AAAAAAAAAAA26OL43ljE/NV4GPsX9lb4aLjO+7uFaPgAAAAAAAAAAZqhWvNuatT2j31O+TBpyvpHNzL0V5Cy9AAAAAAAAAABmZ3I9r5l8P3Q+szx1UeG+Xo/nPdLhOL0AAAAAAAAAAI24lr32pHO6wGVON+06mTIVgN06+q1vtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9KGhmGucOMAWyUTe0CjAF0lEdAliQ4Ui6g/XV9lChoBkdAcBbHS4OMEWgHTfQBaAhHQJYltqqOtGN1fZQoaAZHQHIiJM6BAfNoB015AmgIR0CWJdxkd3jddX2UKGgGR0BsJtzZHuqnaAdNvAJoCEdAliap6Uqx1XV9lChoBkdAccv/ATIvJ2gHTfYBaAhHQJYnYfkmx+t1fZQoaAZHQG4VZof0VahoB00kAmgIR0CWKDnZCfHxdX2UKGgGR0Bs/pPqLS/kaAdNhwJoCEdAlinsLWqcVnV9lChoBkdAcRdvMKTjemgHTdECaAhHQJYqz6N2ki51fZQoaAZHQG/XHWSU1Q9oB02QAWgIR0CWKxOwgTysdX2UKGgGR0BK+skpqh11aAdLwGgIR0CWLSWRigCfdX2UKGgGR0BnEjKDCgscaAdN6ANoCEdAlkhRsQ/X5HV9lChoBkdAb9DwIdELIGgHTSMBaAhHQJZJdb/wRXh1fZQoaAZHQBzQKfFrEcdoB0vcaAhHQJZK2VTrE+B1fZQoaAZHQFAUNA1NxlxoB0vcaAhHQJZLT5AQg9x1fZQoaAZHQG/hAYgq3E1oB02VAmgIR0CWTE5GBnSOdX2UKGgGR0Bs6lhmXgLraAdNWgFoCEdAlkxz67/XG3V9lChoBkdAYXDcoH9m6GgHTegDaAhHQJZMufUWl/J1fZQoaAZHQG9xiSidrftoB02vAWgIR0CWTNV4HHFQdX2UKGgGR0Bi1Qb0e2d/aAdN6ANoCEdAlk+1Ed/8VHV9lChoBkdAQP/kiliz9mgHS/hoCEdAlk/Xsw+MZXV9lChoBkdAcmeohpxm02gHTZsBaAhHQJZQ3/S6UaB1fZQoaAZHQHDmk7bL2YhoB03FAWgIR0CWUTSwGGEgdX2UKGgGR0BxeBkRSP2gaAdNfQJoCEdAllGQxN7BwnV9lChoBkdAcDGnPVurImgHTcIBaAhHQJZS1hCtzS11fZQoaAZHQHL/NTP0I1NoB02sAmgIR0CWVC2qT8pDdX2UKGgGR0BS2IU8FINFaAdL4WgIR0CWVWCpFTegdX2UKGgGR0Bs++G9HtngaAdNAwFoCEdAllaBuTA31nV9lChoBkdAcS35v99+gGgHTR8BaAhHQJZX3LwF1Sx1fZQoaAZHQHA5qn3ta6loB01XAWgIR0CWWJXYlIEsdX2UKGgGR0Bx8+ivgWJraAdNRgFoCEdAllik/B3zMHV9lChoBkdAcZEwYtQKr2gHTUMCaAhHQJZZKXb/Ot51fZQoaAZHQHEHcotthuxoB02GAWgIR0CWWc/YJ3PidX2UKGgGR0BQ+aqKgqVhaAdLmGgIR0CWWkw/xDsudX2UKGgGR0By0RCx/ustaAdNoAFoCEdAll158rqdH3V9lChoBkdAckpeOXE61mgHTYYBaAhHQJZey5lOGj91fZQoaAZHQHKi0pqh11ZoB01qAWgIR0CWX+k43m3fdX2UKGgGR0Bw2UeOn2qUaAdL/mgIR0CWYX41gpjMdX2UKGgGR0BzAFwAEMb4aAdNKQFoCEdAlmI12Rq46XV9lChoBkdANj8r/bTMJWgHS7xoCEdAlmKhkAggYHV9lChoBkdAcOUORT0g82gHTcUBaAhHQJZjKJGe+VV1fZQoaAZHQHGo2RzRx95oB02ZAWgIR0CWY696Tnq3dX2UKGgGR0BxBgJPZZjhaAdNKwJoCEdAlmYECFK02XV9lChoBkdAcCs7iQ1aXGgHTYcCaAhHQJZmhLeyiVV1fZQoaAZHQHDzGqgh8ploB01WAWgIR0CWZw5u63AmdX2UKGgGR0Bxbg4LkS26aAdNhgFoCEdAlmgq33Hq/3V9lChoBkdAcFLKGL1mJ2gHTSgBaAhHQJZq0rPMSsd1fZQoaAZHQG+/0rK/201oB01WAWgIR0CWa4QQtjCpdX2UKGgGR0BtJIlSjxkNaAdN2QFoCEdAlmwOxGDtgXV9lChoBkdAbJObqhUR4GgHTdMCaAhHQJZuCz2OAAh1fZQoaAZHQHBdOOfdyktoB03tAWgIR0CWbhbR4QjEdX2UKGgGR0BFoGhdt2s8aAdL6GgIR0CWbwVLBbfQdX2UKGgGR0BurSyQgcLjaAdNWQFoCEdAlm8x4Y77sXV9lChoBkdAcSlWPcSGrWgHTWYBaAhHQJZwOEdvKlp1fZQoaAZHQHALVRgqmTFoB015AWgIR0CWhqVWjoIOdX2UKGgGR0Bv6owCbMHKaAdNKwFoCEdAloeby1/lQ3V9lChoBkdAcnsH6/IsAmgHTToBaAhHQJaJHLwF1Sx1fZQoaAZHQG4H/+jua4NoB02QAWgIR0CWiTdFfAsTdX2UKGgGR0BwSjAxi5NHaAdNcAFoCEdAlo1y/XXiBHV9lChoBkdAcAgRXwLE1mgHTSQBaAhHQJaN2UpuuRt1fZQoaAZHQHEDRhDw6QxoB01AAWgIR0CWjjz5XU6QdX2UKGgGR0ByTQ0oBq9HaAdNCQJoCEdAlo5GtlqagHV9lChoBkdAcfN8QZn+Q2gHTS0BaAhHQJaOm6+WWyF1fZQoaAZHQHA9sqSX+l1oB00/AWgIR0CWkOv7WNFSdX2UKGgGR0BBR0tZmqYJaAdL12gIR0CWkgN9YwIudX2UKGgGR0BvNP9ehPCVaAdNQQFoCEdAlpIfi1iON3V9lChoBkdAcs998Z1mrmgHTWsBaAhHQJaSpXOnl4l1fZQoaAZHQHDOopUgjhVoB00lAWgIR0CWky0zj3mFdX2UKGgGR0BxuMfZElVtaAdNKQFoCEdAlpQBS9/SY3V9lChoBkdAcNGwCr92o2gHTZgBaAhHQJaVNVbRne11fZQoaAZHQHEmFLzwtrdoB02aAWgIR0CWlpT987ZGdX2UKGgGR0ByWvLwF1SwaAdNZQFoCEdAlpeS7PIGQnV9lChoBkdAZBS1qnFYMmgHTegDaAhHQJaXkcxTKkl1fZQoaAZHQG6TycCo0hxoB00hAWgIR0CWmQSS/0uldX2UKGgGR0Bya5KjBVMmaAdNJgFoCEdAlpkm8IzFdnV9lChoBkdAb/sRradtmGgHTWABaAhHQJaacBltj1B1fZQoaAZHQHJlK0lZ5iVoB02aA2gIR0CWmoGlhw2mdX2UKGgGR0Bxs9n+Q2deaAdNcAFoCEdAlptb8Jlar3V9lChoBkdAbxcEf1YhdWgHTV4BaAhHQJabhrIo3Jh1fZQoaAZHQEbys5n13+xoB0vFaAhHQJacdzYEnst1fZQoaAZHQHFkAwK0D2doB00RAWgIR0CWnLWQOnVHdX2UKGgGR0Bt2bCzkZJkaAdNIwFoCEdAlpzZLh73PHV9lChoBkdAcvywnpjc22gHTUgBaAhHQJadDBRAKOV1fZQoaAZHQHHaZuIhyKhoB01AAWgIR0CWnaeNDMNddX2UKGgGR0Bve336AOJ+aAdNHQFoCEdAlp4qYNRWLnV9lChoBkdAcgQkqMFUymgHS/xoCEdAlp/WvStvGnV9lChoBkdAcftjSG8Em2gHTXcBaAhHQJagIyEcsDp1fZQoaAZHQHHahU70WdpoB00yAWgIR0CWoMj7Q9iddX2UKGgGR0Bx+UZLqUu+aAdNKQFoCEdAlqK0QkHD8HV9lChoBkdAbwMmXPZ7HGgHTS8BaAhHQJaiy7pV0cR1fZQoaAZHQHE0pz1bqyJoB00FAWgIR0CWo53Ytg8bdX2UKGgGR0BI9fKyOaOQaAdL7mgIR0CWo/eMhougdX2UKGgGR0Bvcvag2606aAdNSgFoCEdAlqUm/8EV33V9lChoBkdAbm8pgCwKSmgHTVoBaAhHQJal0KVpsXV1fZQoaAZHQG/4PQF9roJoB01CAWgIR0CWqZdUbT+edX2UKGgGR0BwahPTG5tnaAdNmAFoCEdAlqmphScbznV9lChoBkdAUffuAqd6LWgHS8NoCEdAlqpka/ATI3V9lChoBkdAcd/FF2FFlWgHTZ0BaAhHQJarpxrBTGZ1fZQoaAZHQHCed52Qnx9oB01OAmgIR0CWrHtMPBi1dX2UKGgGR0ByWLa0x/NJaAdNVgFoCEdAlqyvKdQO4HV9lChoBkdAceyvVEuxr2gHS/5oCEdAlqyuiFj/dnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf767e6af08adc0e9021d8db3763952ddf62928aff10e7a906a68911a95b05f7
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49d0d333478a50c3a66f4147d1683176e4d74b60c2499d234b77c369af4118a7
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (156 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 271.3099037927585, "std_reward": 21.03730913558917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-14T12:11:08.373556"}
|