File size: 1,894 Bytes
7d13374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d08180
 
 
7d13374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2df2ec4
352197f
db600bd
7e360b4
3f0f113
cd6ebfd
7d5049f
7015ae0
9d08180
7d13374
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_keras_callback
model-index:
- name: MUmairAB/mt5-small-finetuned-en-and-es
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# MUmairAB/mt5-small-finetuned-en-and-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.8111
- Validation Loss: 3.3450
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 12090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 9.8080     | 4.2830          | 0     |
| 5.9101     | 3.8003          | 1     |
| 5.1453     | 3.6062          | 2     |
| 4.7005     | 3.5052          | 3     |
| 4.4095     | 3.4904          | 4     |
| 4.2204     | 3.3996          | 5     |
| 4.0501     | 3.3842          | 6     |
| 3.9260     | 3.3963          | 7     |
| 3.8527     | 3.3267          | 8     |
| 3.8111     | 3.3450          | 9     |


### Framework versions

- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.0
- Tokenizers 0.13.3