--- base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: shawgpt-ft results: [] --- # shawgpt-ft This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 4.9895 | 0.8571 | 3 | 4.1658 | | 3.4778 | 2.0 | 7 | 3.7207 | | 4.1399 | 2.8571 | 10 | 3.3552 | | 2.747 | 4.0 | 14 | 2.9052 | | 3.2593 | 4.8571 | 17 | 2.6105 | | 2.1018 | 6.0 | 21 | 2.2608 | | 2.4159 | 6.8571 | 24 | 2.0093 | | 1.6044 | 8.0 | 28 | 1.7780 | | 1.9126 | 8.8571 | 31 | 1.6498 | | 1.2575 | 10.0 | 35 | 1.5062 | | 1.6232 | 10.8571 | 38 | 1.4496 | | 1.1013 | 12.0 | 42 | 1.3928 | | 1.4709 | 12.8571 | 45 | 1.3688 | | 1.0337 | 14.0 | 49 | 1.3495 | | 1.4037 | 14.8571 | 52 | 1.3399 | | 1.0328 | 16.0 | 56 | 1.3307 | | 1.3526 | 16.8571 | 59 | 1.3277 | | 0.9745 | 18.0 | 63 | 1.3259 | | 1.299 | 18.8571 | 66 | 1.3254 | | 0.9387 | 20.0 | 70 | 1.3259 | | 1.3275 | 20.8571 | 73 | 1.3271 | | 0.9127 | 22.0 | 77 | 1.3290 | | 1.2574 | 22.8571 | 80 | 1.3300 | | 0.9474 | 24.0 | 84 | 1.3305 | | 1.2843 | 24.8571 | 87 | 1.3302 | | 0.8341 | 25.7143 | 90 | 1.3302 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1