MattStammers commited on
Commit
3e4b853
1 Parent(s): 6114887

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -40.00 +/- 20.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26644755d70de871f6e14790ade6b6de076848d2343d709d2bfce321197fec57
3
+ size 122994
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5798e36950>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f5798e2eec0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694206397196410700,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxm2ePma6uz2H/Bs+Lm0Fv3zN0ryL/Bs+lQTLPJlfEr9C+xs+I4s2v3v/Yj69+Bs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEKTYv1PmeL9Kz+4/EL2wvnJjiT//vWs+DjnIPwsdPr8wQb4/cw+mv/wOzT7IdtA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADcxxi+86rCv7YbM7+IaLS+WL4pv3K9G7w7WJo/xm2ePma6uz2H/Bs+RPHYuyhdAr3V/wm87/Ifu0YwWLxVt4c9gQYRPBydA71C9VI8AXM/Pl/2A75Niay+IACFP34xHD/oCArAre65Py5tBb98zdK8i/wbPhG62btFuQG90Q71u5Y2Kru4kU68O/uHPXHc8TvVngq9RP9YPCIkQj/GmOk+M2ouv5DwLj7VoDM/s8qUPVeHuT+VBMs8mV8Sv0L7Gz40sNW7Jo4BvYoS7rtRNSK7byFZvAkNiD3S0PQ7XCgLvY/eWzwvWIQ+96ylvxv6Mb+p898+buXjPTs1UTxF8Lk/I4s2v3v/Yj69+Bs+PEvRu3i/Ab1e8AK85XFBu9uiU7yNDYg9Xaf0OycqC70PGlM8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[ 0.30943125 0.09166412 0.1523305 ]\n [-0.5211972 -0.02573275 0.15233056]\n [ 0.02478246 -0.5717712 0.15232566]\n [-0.71306056 0.2216777 0.15231605]]",
34
+ "desired_goal": "[[-1.6925068 -0.97226447 1.865701 ]\n [-0.34519243 1.0733473 0.23021697]\n [ 1.5642412 -0.74263066 1.4863644 ]\n [-1.2973465 0.40050495 1.6286249 ]]",
35
+ "observation": "[[-0.1491999 -1.520842 -0.6996416 -0.35236 -0.66306067 -0.00950562\n 1.2058176 0.30943125 0.09166412 0.1523305 -0.00662056 -0.03182712\n -0.00842281 -0.00244063 -0.0131951 0.06626765 0.00885165 -0.03213225\n 0.01287586]\n [ 0.18696214 -0.12886952 -0.33698502 1.0390663 0.6101302 -2.1567936\n 1.4525963 -0.5211972 -0.02573275 0.15233056 -0.0066445 -0.03167083\n -0.00747857 -0.00259725 -0.01260798 0.06639715 0.00738101 -0.03384288\n 0.01324445]\n [ 0.75836384 0.4562437 -0.681308 0.17083955 0.70167285 0.07265224\n 1.4494427 0.02478246 -0.5717712 0.15232566 -0.00652125 -0.0316297\n -0.00726539 -0.0024751 -0.0132526 0.06643111 0.00747118 -0.03397404\n 0.01341976]\n [ 0.2584853 -1.294341 -0.69522256 0.43740585 0.11127745 0.01276904\n 1.452645 -0.71306056 0.2216777 0.15231605 -0.00638714 -0.03167674\n -0.00799188 -0.00295173 -0.01291725 0.0664321 0.00746624 -0.03397575\n 0.01288463]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwoA5PXZSDjwK16M8OntdvfBS6r0K16M8ka2cO6w1RjwK16M8nSyTvRxLZz0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO5PcPJHd4b0K16M8af4IvcSBsr3Vito85/mRvdlMxL2dd2w94UDgPV/shTyHEp89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAwoA5PXZSDjwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADp7Xb3wUuq9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACRrZw7rDVGPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAnSyTvRxLZz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[ 0.04528881 0.00868665 0.02 ]\n [-0.0540726 -0.114416 0.02 ]\n [ 0.00478143 0.01209776 0.02 ]\n [-0.07186244 0.05646811 0.02 ]]",
45
+ "desired_goal": "[[ 0.02692567 -0.11028589 0.02 ]\n [-0.03344575 -0.08716157 0.02667753]\n [-0.07127743 -0.0958497 0.05773126]\n [ 0.10949875 0.01634806 0.07767206]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.5288809e-02\n 8.6866524e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.4072596e-02\n -1.1441600e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.7814329e-03\n 1.2097757e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -7.1862437e-02\n 5.6468114e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cs5P/qxC6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5XMewLVndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5No1tO2zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5gNsN2C/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5mg8KXv6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5t2q1gIAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5kcbiqACdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs524TCcgAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs59UYsNDudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6EY7JW/8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs565wwTM8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6Qbp3X7MdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cs6Q6VdHDrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6W+FDfFadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6elpGnXNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6VL30wrUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6ntDD0lJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6tlLFn7IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs60c9Oh0ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6q4Dklu4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs69pxeb/fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7DinYQJ5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7KxBu4wzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7BOYplSTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7UNsWO6vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7aZnUUfxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7hvqLS/kdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cs7iOJ+DvmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7YZH/cWTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7rmwJPZadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7xptzjm0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs74/oaDPGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7u6ufVZtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8CS/j81odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8ILf+CK8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8QIVdonKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8GMdDIBBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8YkSElE7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8el3pwCKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8mSVGCqZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8chUrCm/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8wefRNRFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs82UkfLcLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8+ER8MNMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs80Dx9XtCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9IQLE1l5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9OLvLHMmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9VxvWH1wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9MFL39JjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9d0O3DvWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9kAcDKYBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9sEnTiKjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9iAwwj+rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs92k3juKGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs98puVHFxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+ESVnmJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs96tAs053dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+NIgV45cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+TIcrAgxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+a4qXnhbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+RHKOktVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+joj4YaYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+pZYoy9FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+wgmReTndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+ma3I+4cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+4kvkBCEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs++Z+6RQrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/Gibc45tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+8cLKFIvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/OCbMHKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/T2/SH/MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/bWHtWuHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/RkZiuuBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/kYBmwqzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/qavA44qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/yFTvRZ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/oJ9y926dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/6dqtYCAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAARmkFfRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAHwNkOI7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/9o3irDJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAQnQQcxTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAWh0yP+5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAd6YNRWMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAUAiu+yrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAnQu/UONdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAtLGR3eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtA07Tc6/7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAq2gezUrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtA9WIfr8jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBDMGgSOBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBKlwtJ4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBAzQeFL4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBTRbr1M/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBZO5z5oHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBg8er+5wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBXXoLXtjdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CtBYAIIF/ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBrbN8ma6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBxSI55qudWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdi9ob21lL2NvZ3N0YWNrLy5sb2NhbC9zaGFyZS92aXJ0dWFsZW52cy9vcHR1bmEta1Y5eUNDQlMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHYvaG9tZS9jb2dzdGFjay8ubG9jYWwvc2hhcmUvdmlydHVhbGVudnMvb3B0dW5hLWtWOXlDQ0JTL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42a21e8afce42eb4613a334deb282d6d01daa238c8da0bdc34ae377e039f54cd
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e6c66261f8dbc2ce8cdc3a62ce8c158745c3225cc6cda4f6b0e2137ef063433
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-69-generic-x86_64-with-glibc2.31 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023
2
+ - Python: 3.10.10
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5798e36950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5798e2eec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694206397196410700, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxm2ePma6uz2H/Bs+Lm0Fv3zN0ryL/Bs+lQTLPJlfEr9C+xs+I4s2v3v/Yj69+Bs+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEKTYv1PmeL9Kz+4/EL2wvnJjiT//vWs+DjnIPwsdPr8wQb4/cw+mv/wOzT7IdtA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADcxxi+86rCv7YbM7+IaLS+WL4pv3K9G7w7WJo/xm2ePma6uz2H/Bs+RPHYuyhdAr3V/wm87/Ifu0YwWLxVt4c9gQYRPBydA71C9VI8AXM/Pl/2A75Niay+IACFP34xHD/oCArAre65Py5tBb98zdK8i/wbPhG62btFuQG90Q71u5Y2Kru4kU68O/uHPXHc8TvVngq9RP9YPCIkQj/GmOk+M2ouv5DwLj7VoDM/s8qUPVeHuT+VBMs8mV8Sv0L7Gz40sNW7Jo4BvYoS7rtRNSK7byFZvAkNiD3S0PQ7XCgLvY/eWzwvWIQ+96ylvxv6Mb+p898+buXjPTs1UTxF8Lk/I4s2v3v/Yj69+Bs+PEvRu3i/Ab1e8AK85XFBu9uiU7yNDYg9Xaf0OycqC70PGlM8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.30943125 0.09166412 0.1523305 ]\n [-0.5211972 -0.02573275 0.15233056]\n [ 0.02478246 -0.5717712 0.15232566]\n [-0.71306056 0.2216777 0.15231605]]", "desired_goal": "[[-1.6925068 -0.97226447 1.865701 ]\n [-0.34519243 1.0733473 0.23021697]\n [ 1.5642412 -0.74263066 1.4863644 ]\n [-1.2973465 0.40050495 1.6286249 ]]", "observation": "[[-0.1491999 -1.520842 -0.6996416 -0.35236 -0.66306067 -0.00950562\n 1.2058176 0.30943125 0.09166412 0.1523305 -0.00662056 -0.03182712\n -0.00842281 -0.00244063 -0.0131951 0.06626765 0.00885165 -0.03213225\n 0.01287586]\n [ 0.18696214 -0.12886952 -0.33698502 1.0390663 0.6101302 -2.1567936\n 1.4525963 -0.5211972 -0.02573275 0.15233056 -0.0066445 -0.03167083\n -0.00747857 -0.00259725 -0.01260798 0.06639715 0.00738101 -0.03384288\n 0.01324445]\n [ 0.75836384 0.4562437 -0.681308 0.17083955 0.70167285 0.07265224\n 1.4494427 0.02478246 -0.5717712 0.15232566 -0.00652125 -0.0316297\n -0.00726539 -0.0024751 -0.0132526 0.06643111 0.00747118 -0.03397404\n 0.01341976]\n [ 0.2584853 -1.294341 -0.69522256 0.43740585 0.11127745 0.01276904\n 1.452645 -0.71306056 0.2216777 0.15231605 -0.00638714 -0.03167674\n -0.00799188 -0.00295173 -0.01291725 0.0664321 0.00746624 -0.03397575\n 0.01288463]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwoA5PXZSDjwK16M8OntdvfBS6r0K16M8ka2cO6w1RjwK16M8nSyTvRxLZz0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO5PcPJHd4b0K16M8af4IvcSBsr3Vito85/mRvdlMxL2dd2w94UDgPV/shTyHEp89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAwoA5PXZSDjwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAADp7Xb3wUuq9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACRrZw7rDVGPArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAnSyTvRxLZz0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.04528881 0.00868665 0.02 ]\n [-0.0540726 -0.114416 0.02 ]\n [ 0.00478143 0.01209776 0.02 ]\n [-0.07186244 0.05646811 0.02 ]]", "desired_goal": "[[ 0.02692567 -0.11028589 0.02 ]\n [-0.03344575 -0.08716157 0.02667753]\n [-0.07127743 -0.0958497 0.05773126]\n [ 0.10949875 0.01634806 0.07767206]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.5288809e-02\n 8.6866524e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.4072596e-02\n -1.1441600e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 4.7814329e-03\n 1.2097757e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -7.1862437e-02\n 5.6468114e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cs5P/qxC6ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5XMewLVndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5No1tO2zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5gNsN2C/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5mg8KXv6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5t2q1gIAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs5kcbiqACdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs524TCcgAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs59UYsNDudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6EY7JW/8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs565wwTM8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6Qbp3X7MdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cs6Q6VdHDrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6W+FDfFadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6elpGnXNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6VL30wrUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6ntDD0lJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6tlLFn7IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs60c9Oh0ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs6q4Dklu4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs69pxeb/fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7DinYQJ5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7KxBu4wzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7BOYplSTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7UNsWO6vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7aZnUUfxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7hvqLS/kdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cs7iOJ+DvmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7YZH/cWTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7rmwJPZadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7xptzjm0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs74/oaDPGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs7u6ufVZtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8CS/j81odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8ILf+CK8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8QIVdonKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8GMdDIBBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8YkSElE7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8el3pwCKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8mSVGCqZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8chUrCm/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8wefRNRFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs82UkfLcLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs8+ER8MNMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs80Dx9XtCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9IQLE1l5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9OLvLHMmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9VxvWH1wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9MFL39JjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9d0O3DvWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9kAcDKYBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9sEnTiKjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs9iAwwj+rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs92k3juKGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs98puVHFxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+ESVnmJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs96tAs053dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+NIgV45cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+TIcrAgxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+a4qXnhbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+RHKOktVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+joj4YaYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+pZYoy9FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+wgmReTndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+ma3I+4cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+4kvkBCEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs++Z+6RQrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/Gibc45tdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs+8cLKFIvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/OCbMHKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/T2/SH/MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/bWHtWuHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/RkZiuuBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/kYBmwqzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/qavA44qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/yFTvRZ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/oJ9y926dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/6dqtYCAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAARmkFfRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAHwNkOI7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cs/9o3irDJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAQnQQcxTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAWh0yP+5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAd6YNRWMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAUAiu+yrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAnQu/UONdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAtLGR3eOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtA07Tc6/7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtAq2gezUrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtA9WIfr8jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBDMGgSOBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBKlwtJ4CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBAzQeFL4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBTRbr1M/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBZO5z5oHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBg8er+5wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBXXoLXtjdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CtBYAIIF/ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBrbN8ma6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CtBxSI55qudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdi9ob21lL2NvZ3N0YWNrLy5sb2NhbC9zaGFyZS92aXJ0dWFsZW52cy9vcHR1bmEta1Y5eUNDQlMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHYvaG9tZS9jb2dzdGFjay8ubG9jYWwvc2hhcmUvdmlydHVhbGVudnMvb3B0dW5hLWtWOXlDQ0JTL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.0-69-generic-x86_64-with-glibc2.31 # 76~20.04.1-Ubuntu SMP Mon Mar 20 15:54:19 UTC 2023", "Python": "3.10.10", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -40.0, "std_reward": 20.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-08T22:55:16.873777"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e055430a72786d6cf58f06d62eac364e04d19e51daa7821a0c35f58b4c804bd
3
+ size 3013