File size: 2,774 Bytes
a209fba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e530c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: stable-baselines3
tags:
- AsteroidsNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: AsteroidsNoFrameskip-v4
      type: AsteroidsNoFrameskip-v4
    metrics:
    - type: mean_reward
      value: 1824.00 +/- 644.72
      name: mean_reward
      verified: false
---

# **PPO** Agent playing **AsteroidsNoFrameskip-v4**
This is a trained model of a **PPO** agent playing **AsteroidsNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).

The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.

## Usage (with SB3 RL Zoo)

RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib

Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```

```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env AsteroidsNoFrameskip-v4 -orga MattStammers -f logs/
python -m rl_zoo3.enjoy --algo ppo --env AsteroidsNoFrameskip-v4  -f logs/
```

If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo ppo --env AsteroidsNoFrameskip-v4 -orga MattStammers -f logs/
python -m rl_zoo3.enjoy --algo ppo --env AsteroidsNoFrameskip-v4  -f logs/
```

## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo ppo --env AsteroidsNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env AsteroidsNoFrameskip-v4 -f logs/ -orga MattStammers
```

## Hyperparameters
```python
OrderedDict([('batch_size', 256),
             ('clip_range', 'lin_0.1'),
             ('ent_coef', 0.01),
             ('env_wrapper',
              ['stable_baselines3.common.atari_wrappers.AtariWrapper']),
             ('frame_stack', 4),
             ('learning_rate', 'lin_2.5e-4'),
             ('n_envs', 8),
             ('n_epochs', 4),
             ('n_steps', 128),
             ('n_timesteps', 10000000.0),
             ('normalize', False),
             ('policy', 'CnnPolicy'),
             ('vf_coef', 0.5)])
```

# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```

Annoyingly the asteroids are not rendered in the video (at the moment either the asteroids or the ship is rendering) but you can see that he his pretty active in pursuing them.