--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-2 datasets: - MaxReynolds/Lee_Souder_Combined tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # Text-to-image finetuning - MaxReynolds/SouderRocketLauncherNetCombined_300 This pipeline was finetuned from **CompVis/stable-diffusion-v1-2** on the **MaxReynolds/Lee_Souder_Combined** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['Rocket Launcher by Lee Souder']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("MaxReynolds/SouderRocketLauncherNetCombined_300", torch_dtype=torch.float16) prompt = "Rocket Launcher by Lee Souder" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 30 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 512 * Mixed-precision: fp16 More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/max-f-reynolds/text2image-fine-tune/runs/qlfa2vzh).