--- language: - fr - en license: other library_name: transformers tags: - chat - qwen - qwen2.5 - finetune - french - english base_model: Qwen/Qwen2.5-3B datasets: - MaziyarPanahi/french_instruct_sharegpt - arcee-ai/EvolKit-20k model_name: calme-3.3-instruct-3b license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE pipeline_tag: text-generation inference: false model_creator: MaziyarPanahi quantized_by: MaziyarPanahi model-index: - name: calme-3.3-instruct-3b results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 64.23 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.3-instruct-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 25.68 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.3-instruct-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.3-instruct-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 4.36 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.3-instruct-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 9.4 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.3-instruct-3b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 25.62 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.3-instruct-3b name: Open LLM Leaderboard --- Calme-3 Models > [!TIP] > This is avery small model, so it might not perform well for some prompts and may be sensitive to hyper parameters. I would appreciate any feedback to see if I can fix any issues in the next iteration. ❤️ > # MaziyarPanahi/calme-3.3-instruct-3b This model is an advanced iteration of the powerful `Qwen/Qwen2.5-3B`, specifically fine-tuned to enhance its capabilities in generic domains. # ⚡ Quantized GGUF All GGUF models are available here: [MaziyarPanahi/calme-3.3-instruct-3b-GGUF](https://huggingface.co/MaziyarPanahi/calme-3.3-instruct-3b-GGUF) # 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__calme-3.3-instruct-3b) | Metric |Value| |-------------------|----:| |Avg. |21.55| |IFEval (0-Shot) |64.23| |BBH (3-Shot) |25.68| |MATH Lvl 5 (4-Shot)| 0.00| |GPQA (0-shot) | 4.36| |MuSR (0-shot) | 9.40| |MMLU-PRO (5-shot) |25.62| # Prompt Template This model uses `ChatML` prompt template: ``` <|im_start|>system {System} <|im_end|> <|im_start|>user {User} <|im_end|> <|im_start|>assistant {Assistant} ```` # How to use ```python # Use a pipeline as a high-level helper from transformers import pipeline messages = [ {"role": "user", "content": "Who are you?"}, ] pipe = pipeline("text-generation", model="MaziyarPanahi/calme-3.3-instruct-3b") pipe(messages) # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-3.3-instruct-3b") model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-3.3-instruct-3b") ``` # Ethical Considerations As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.