--- license: apache-2.0 tags: - Safetensors - text-generation-inference - merge - mistral - 7b - mistralai/Mistral-7B-Instruct-v0.1 - HuggingFaceH4/zephyr-7b-beta - transformers - pytorch - safetensors - mistral - text-generation - generated_from_trainer - en - dataset:HuggingFaceH4/ultrachat_200k - dataset:HuggingFaceH4/ultrafeedback_binarized - arxiv:2305.18290 - arxiv:2310.16944 - base_model:mistralai/Mistral-7B-v0.1 - license:mit - model-index - autotrain_compatible - endpoints_compatible - has_space - text-generation-inference - region:us --- # zephyr-7b-beta-Mistral-7B-Instruct-v0.1 zephyr-7b-beta-Mistral-7B-Instruct-v0.1 is a merge of the following models: * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) * [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.1-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.1-GGUF) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.1 layer_range: [0, 32] - model: HuggingFaceH4/zephyr-7b-beta layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MaziyarPanahi/zephyr-7b-beta-Mistral-7B-Instruct-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```