LLM2Vec-Mistral-7B-Instruct-v2-mntp / modeling_mistral_encoder.py
vaibhavad's picture
Create modeling_mistral_encoder.py
ebdd7e4 verified
raw
history blame
11.4 kB
from typing import List, Optional, Tuple, Union
import torch
import torch.multiprocessing as mp
from transformers import MistralModel, MistralPreTrainedModel, MistralConfig
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.cache_utils import Cache, DynamicCache
from transformers.models.mistral.modeling_mistral import MistralDecoderLayer, MistralRMSNorm, MistralAttention, MistralFlashAttention2, MistralSdpaAttention, MistralMLP
from torch import Tensor, nn, device
from transformers.utils import logging
from .attn_mask_utils import _prepare_4d_causal_attention_mask
logger = logging.get_logger(__name__)
def batch_to_device(batch, target_device: device):
"""
send a pytorch batch to a device (CPU/GPU)
"""
for key in batch:
if isinstance(batch[key], Tensor):
batch[key] = batch[key].to(target_device)
return batch
class ModifiedMistralAttention(MistralAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_causal = False
class ModifiedMistralFlashAttention2(MistralFlashAttention2):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_causal = False
class ModifiedMistralSdpaAttention(MistralSdpaAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_causal = False
MISTRAL_ATTENTION_CLASSES = {
"eager": ModifiedMistralAttention,
"flash_attention_2": ModifiedMistralFlashAttention2,
"sdpa": ModifiedMistralSdpaAttention,
}
class ModifiedMistralDecoderLayer(MistralDecoderLayer):
def __init__(self, config: MistralConfig, layer_idx: int):
nn.Module.__init__(self)
self.hidden_size = config.hidden_size
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = MistralMLP(config)
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
class MistralEncoderModel(MistralModel):
def __init__(self, config: MistralConfig):
MistralPreTrainedModel.__init__(self, config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[ModifiedMistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
# sliding window is not supported for non-causal attention
if not self._use_flash_attention_2:
self.config.sliding_window = None
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def prepare_for_tokenization(self, text):
text = '[INST] ' + text.strip() + ' [/INST]'
# if self.pooling_mode == "eos_token":
# text = text.strip() + ' </s>'
return text
def tokenize(self, texts):
# return self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length)
texts_2 = []
original_texts = []
for text in texts:
t = text.split("!@#$%^&*()")
texts_2.append(t[1])
original_texts.append("".join(t))
original = self.tokenizer(original_texts, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length)
embed_mask = None
for t_i, t in enumerate(texts_2):
ids = self.tokenizer([t], return_tensors='pt', padding=True, truncation=True, max_length=self.max_length, add_special_tokens=False)
if embed_mask is None:
e_m = torch.zeros_like(original["attention_mask"][t_i])
if len(ids["input_ids"][0]) > 0:
e_m[-len(ids["input_ids"][0]):] = torch.ones(len(ids["input_ids"][0]))
embed_mask = e_m.unsqueeze(0)
else:
e_m = torch.zeros_like(original["attention_mask"][t_i])
if len(ids["input_ids"][0]) > 0:
e_m[-len(ids["input_ids"][0]):] = torch.ones(len(ids["input_ids"][0]))
embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
original["embed_mask"] = embed_mask
return original
def _skip_instruction(self, sentence_feature):
assert sentence_feature["attention_mask"].shape == sentence_feature["embed_mask"].shape
sentence_feature["attention_mask"] = sentence_feature["embed_mask"]
def _encode(self, sentences_batch, device, convert_to_numpy, multiprocessing=False):
if multiprocessing:
rank = mp.current_process()._identity[0]
if device is None and torch.cuda.is_available():
device = f"cuda:{rank % torch.cuda.device_count()}"
self.to(device)
features = self.tokenize([self.prepare_for_tokenization(sentence) for sentence in sentences_batch])
features = batch_to_device(features, device)
with torch.no_grad():
embeddings = self.forward(features)
embeddings = embeddings.detach()
embeddings = embeddings.cpu()
return embeddings