Megalino111
commited on
Commit
•
585db0d
1
Parent(s):
9937ab5
Update README.md
Browse files
README.md
CHANGED
@@ -30,8 +30,65 @@ TODO: Add your code
|
|
30 |
|
31 |
|
32 |
```python
|
33 |
-
from stable_baselines3 import ...
|
34 |
-
from huggingface_sb3 import load_from_hub
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
...
|
37 |
```
|
|
|
30 |
|
31 |
|
32 |
```python
|
|
|
|
|
33 |
|
34 |
+
%%capture
|
35 |
+
!apt install python-opengl
|
36 |
+
!apt install ffmpeg
|
37 |
+
!apt install xvfb
|
38 |
+
!pip3 install pyvirtualdisplay
|
39 |
+
|
40 |
+
|
41 |
+
from pyvirtualdisplay import Display
|
42 |
+
|
43 |
+
virtual_display = Display(visible=0, size=(1400, 900))
|
44 |
+
virtual_display.start()
|
45 |
+
|
46 |
+
!pip install stable-baselines3[extra]
|
47 |
+
!pip install gymnasium
|
48 |
+
!pip install huggingface_sb3
|
49 |
+
!pip install huggingface_hub
|
50 |
+
!pip install panda_gym
|
51 |
+
|
52 |
+
import os
|
53 |
+
|
54 |
+
import gymnasium as gym
|
55 |
+
import panda_gym
|
56 |
+
from stable_baselines3 import A2C
|
57 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
58 |
+
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
|
59 |
+
from stable_baselines3.common.env_util import make_vec_env
|
60 |
+
|
61 |
+
env_id = "PandaPickAndPlace-v3"
|
62 |
+
|
63 |
+
env = gym.make(env_id)
|
64 |
+
env = make_vec_env(env_id, n_envs=4)
|
65 |
+
env = VecNormalize(env, clip_obs = 10)
|
66 |
+
model = A2C("MultiInputPolicy", env, verbose=1)
|
67 |
+
model.learn(1_000_000)
|
68 |
+
|
69 |
+
model.save("a2c-PandaPickAndPlace-v3")
|
70 |
+
env.save("vec_normalize.pkl")
|
71 |
+
|
72 |
+
|
73 |
+
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
|
74 |
+
|
75 |
+
# Load the saved statistics
|
76 |
+
eval_env = DummyVecEnv([lambda: gym.make("PandaPickAndPlace-v3")])
|
77 |
+
eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)
|
78 |
+
|
79 |
+
# We need to override the render_mode
|
80 |
+
eval_env.render_mode = "rgb_array"
|
81 |
+
|
82 |
+
# do not update them at test time
|
83 |
+
eval_env.training = False
|
84 |
+
# reward normalization is not needed at test time
|
85 |
+
eval_env.norm_reward = False
|
86 |
+
|
87 |
+
# Load the agent
|
88 |
+
model = A2C.load("a2c-PandaPickAndPlace-v3")
|
89 |
+
|
90 |
+
mean_reward, std_reward = evaluate_policy(model, eval_env)
|
91 |
+
|
92 |
+
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
|
93 |
...
|
94 |
```
|