File size: 1,370 Bytes
b1ac57e
5c5b395
b1ac57e
2420a18
 
b1ac57e
 
 
 
582580b
b1ac57e
 
fdc7e30
d1afff5
b1ac57e
 
 
 
08ff13d
 
 
b1ac57e
 
 
 
 
 
 
 
 
 
cbbe4f7
b1ac57e
 
2420a18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
pipeline_tag: text-to-image
license: apache-2.0
tags:
- Non-Autoregressive
---

# Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis

[Paper](https://arxiv.org/abs/2410.08261) | [Model](https://huggingface.co/MeissonFlow/Meissonic) | [Code](https://github.com/viiika/Meissonic) | [Demo](https://huggingface.co/spaces/MeissonFlow/meissonic)


![demo](./assets/demos.png)


## Introduction
Meissonic is a non-autoregressive mask image modeling text-to-image synthesis model that can generate high-resolution images. It is designed to run on consumer graphics cards.

**Note: This is a project under development. If you encounter any specific performance issues or find significant discrepancies with the results reported in the paper, please submit an issue on the GitHub repository! Thank you for your support!**


## Usage

Under Construction. Please check back later.

## Citation
If you find this work helpful, please consider citing:
```bibtex
@article{bai2024meissonic,
  title={Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis},
  author={Bai, Jinbin and Ye, Tian and Chow, Wei and Song, Enxin and Chen, Qing-Guo and Li, Xiangtai and Dong, Zhen and Zhu, Lei and Yan, Shuicheng},
  journal={arXiv preprint arXiv:2410.08261},
  year={2024}
}
```