File size: 9,605 Bytes
a3c384a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.schedulers.scheduling_utils import SchedulerMixin
import torch.nn.functional as F
def gumbel_noise(t, generator=None):
device = generator.device if generator is not None else t.device
noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device)
return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20))
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator)
sorted_confidence = torch.sort(confidence, dim=-1).values
cut_off = torch.gather(sorted_confidence, 1, mask_len.long())
masking = confidence < cut_off
return masking
@dataclass
class SchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: torch.Tensor = None
class Scheduler(SchedulerMixin, ConfigMixin):
order = 1
temperatures: torch.Tensor
@register_to_config
def __init__(
self,
mask_token_id: int,
masking_schedule: str = "cosine",
):
self.temperatures = None
self.timesteps = None
def set_timesteps(
self,
num_inference_steps: int,
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
device: Union[str, torch.device] = None,
):
self.timesteps = torch.arange(num_inference_steps, device=device).flip(0)
if isinstance(temperature, (tuple, list)):
self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device)
else:
self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device)
### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html
def top_k_top_p_filtering(
self,
logits,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = torch.zeros_like(logits, dtype=torch.bool).scatter_(-1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
def step(
self,
model_output: torch.Tensor,
timestep: torch.long,
sample: torch.LongTensor,
starting_mask_ratio: int = 1,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
using_topk_topp: Optional[bool] = False,
sampling_temperature: Optional[float] = 1.0,
) -> Union[SchedulerOutput, Tuple]:
two_dim_input = sample.ndim == 3 and model_output.ndim == 4
if two_dim_input:
batch_size, codebook_size, height, width = model_output.shape
sample = sample.reshape(batch_size, height * width)
model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1)
unknown_map = sample == self.config.mask_token_id
if using_topk_topp:
model_output = model_output / max(sampling_temperature, 1e-5)
if using_topk_topp:
top_k=8192
top_p=0.2
if top_k > 0 or top_p < 1.0:
model_output = self.top_k_top_p_filtering(model_output, top_k=top_k, top_p=top_p)
probs = model_output.softmax(dim=-1)
device = probs.device
probs_ = probs.to(generator.device) if generator is not None else probs # handles when generator is on CPU
if probs_.device.type == "cpu" and probs_.dtype != torch.float32:
probs_ = probs_.float() # multinomial is not implemented for cpu half precision
probs_ = probs_.reshape(-1, probs.size(-1))
pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device)
pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1])
pred_original_sample = torch.where(unknown_map, pred_original_sample, sample)
if timestep == 0:
prev_sample = pred_original_sample
else:
seq_len = sample.shape[1]
step_idx = (self.timesteps == timestep).nonzero()
ratio = (step_idx + 1) / len(self.timesteps)
if self.config.masking_schedule == "cosine":
mask_ratio = torch.cos(ratio * math.pi / 2)
elif self.config.masking_schedule == "linear":
mask_ratio = 1 - ratio
else:
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
mask_ratio = starting_mask_ratio * mask_ratio
mask_len = (seq_len * mask_ratio).floor()
# do not mask more than amount previously masked
mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
# mask at least one
mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len)
selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0]
# Ignores the tokens given in the input by overwriting their confidence.
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator)
# Masks tokens with lower confidence.
prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample)
if two_dim_input:
prev_sample = prev_sample.reshape(batch_size, height, width)
pred_original_sample = pred_original_sample.reshape(batch_size, height, width)
if not return_dict:
return (prev_sample, pred_original_sample)
return SchedulerOutput(prev_sample, pred_original_sample)
def add_noise(self, sample, timesteps, generator=None):
step_idx = (self.timesteps == timesteps).nonzero()
ratio = (step_idx + 1) / len(self.timesteps)
if self.config.masking_schedule == "cosine":
mask_ratio = torch.cos(ratio * math.pi / 2)
elif self.config.masking_schedule == "linear":
mask_ratio = 1 - ratio
else:
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
mask_indices = (
torch.rand(
sample.shape, device=generator.device if generator is not None else sample.device, generator=generator
).to(sample.device)
< mask_ratio
)
masked_sample = sample.clone()
masked_sample[mask_indices] = self.config.mask_token_id
return masked_sample
|