File size: 2,184 Bytes
00464b0 f299274 00464b0 f299274 00464b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-zh
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-zh
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1950
- Rouge1: 15.5597
- Rouge2: 6.7429
- Rougel: 15.1794
- Rougelsum: 15.063
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 8.0083 | 1.0 | 838 | 3.5147 | 13.2577 | 6.0411 | 12.9176 | 12.8293 |
| 4.0156 | 2.0 | 1676 | 3.3382 | 14.2493 | 6.3606 | 13.9407 | 13.7391 |
| 3.6492 | 3.0 | 2514 | 3.2576 | 15.915 | 7.4853 | 15.8512 | 15.72 |
| 3.473 | 4.0 | 3352 | 3.2266 | 16.3162 | 6.6844 | 15.9962 | 15.8693 |
| 3.3509 | 5.0 | 4190 | 3.2010 | 15.2992 | 6.2211 | 14.9191 | 14.8807 |
| 3.2828 | 6.0 | 5028 | 3.2008 | 15.379 | 6.38 | 15.1408 | 15.0073 |
| 3.2304 | 7.0 | 5866 | 3.2003 | 15.8089 | 6.7429 | 15.4859 | 15.3334 |
| 3.191 | 8.0 | 6704 | 3.1950 | 15.5597 | 6.7429 | 15.1794 | 15.063 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|