File size: 2,184 Bytes
00464b0
 
 
 
 
 
 
 
 
f299274
00464b0
 
 
 
 
 
f299274
00464b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-zh
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-amazon-en-zh

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1950
- Rouge1: 15.5597
- Rouge2: 6.7429
- Rougel: 15.1794
- Rougelsum: 15.063

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 8.0083        | 1.0   | 838  | 3.5147          | 13.2577 | 6.0411 | 12.9176 | 12.8293   |
| 4.0156        | 2.0   | 1676 | 3.3382          | 14.2493 | 6.3606 | 13.9407 | 13.7391   |
| 3.6492        | 3.0   | 2514 | 3.2576          | 15.915  | 7.4853 | 15.8512 | 15.72     |
| 3.473         | 4.0   | 3352 | 3.2266          | 16.3162 | 6.6844 | 15.9962 | 15.8693   |
| 3.3509        | 5.0   | 4190 | 3.2010          | 15.2992 | 6.2211 | 14.9191 | 14.8807   |
| 3.2828        | 6.0   | 5028 | 3.2008          | 15.379  | 6.38   | 15.1408 | 15.0073   |
| 3.2304        | 7.0   | 5866 | 3.2003          | 15.8089 | 6.7429 | 15.4859 | 15.3334   |
| 3.191         | 8.0   | 6704 | 3.1950          | 15.5597 | 6.7429 | 15.1794 | 15.063    |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3