File size: 3,034 Bytes
e7034f6
 
 
 
 
 
1eacc3d
 
 
 
 
 
 
 
 
e7034f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eacc3d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: mit
train: false
inference: true
pipeline_tag: text-generation
base_model:
- mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1
language:
- en
tags:
- DeepSeek-R1-Distill-Qwen2.5-1.5B
---

Original Model : https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1

---
This is a version of the <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> model re-distilled for better performance.

## Performance

| Models            | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1">DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1</a> | 
|:-------------------:|:--------:|:----------------:|
| ARC (25-shot)      | 40.96 | <b>41.55</b>  | 
| HellaSwag (10-shot)| 44    | <b>45.88</b> |
| MMLU (5-shot)      | 39.27 | <b>41.82</b> | 
| TruthfulQA-MC2     | 45.17 | <b>46.63</b> | 
| Winogrande (5-shot)| 55.49 | <b>57.7</b> | 
| GSM8K (5-shot)     | 69.9  | <b>74.3</b> | 
| Average            | 49.13 | <b>51.31</b> | 

| Models            | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B">DeepSeek-R1-Distill-Qwen-1.5B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1">DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1</a>  | 
|:-------------------:|:--------:|:----------------:|
| GPQA (0-shot)     | 26.96 | <b>26.99</b>  | 
| MMLU PRO (5-shot) | 16.74 | <b>19.86</b> | 
| MUSR (0-shot)     | 35.93 | <b>36.6</b> | 
| BBH (3-shot)      | 35.12 | <b>37.23</b> | 
| IfEval (0-shot)   | 24.94 | <b>27.22</b> | 

## Usage
```Python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
compute_dtype = torch.bfloat16
device   = 'cuda'
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1"

model     = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt  = "What is 1.5+102.2?"
chat    = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True) 
print(tokenizer.decode(outputs[0]))
```

Output:
```
<|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think>
First, I identify the numbers involved in the addition: 1.5 and 102.2.

Next, I add the whole numbers: 1 + 102 equals 103.

Then, I add the decimal parts: 0.5 + 0.2 equals 0.7.

Finally, I combine the results: 103 + 0.7 equals 103.7.
</think>

To solve the addition \(1.5 + 102.2\), follow these steps:

1. **Add the whole numbers:**
   \[
   1 + 102 = 103
   \]

2. **Add the decimal parts:**
   \[
   0.5 + 0.2 = 0.7
   \]

3. **Combine the results:**
   \[
   103 + 0.7 = 103.7
   \]

So, the final answer is \(\boxed{103.7}\).<|end▁of▁sentence|>
```
---