Update README.md
Browse files
README.md
CHANGED
@@ -1,129 +1,29 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
-
train: false
|
4 |
-
inference: true
|
5 |
-
pipeline_tag: text-generation
|
6 |
base_model:
|
7 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
-
This is a version of the <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B">DeepSeek-R1-Distill-Qwen-7B</a> model re-distilled for better performance.
|
10 |
-
|
11 |
-
## Performance
|
12 |
-
|
13 |
-
| Models | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B">DeepSeek-R1-Distill-Qwen-7B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1">DeepSeek-R1-ReDistill-Qwen-7B-v1.1</a> |
|
14 |
-
|:-------------------:|:--------:|:----------------:|
|
15 |
-
| ARC (25-shot) | <b>55.03</b> | 52.3 |
|
16 |
-
| HellaSwag (10-shot)| 61.9 | <b>62.36</b> |
|
17 |
-
| MMLU (5-shot) | 56.75 | <b>59.53</b> |
|
18 |
-
| TruthfulQA-MC2 | 45.76 | <b>47.7</b> |
|
19 |
-
| Winogrande (5-shot)| 60.38 | <b>61.8</b> |
|
20 |
-
| GSM8K (5-shot) | 78.85 | <b>83.4</b> |
|
21 |
-
| Average | 59.78 | <b>61.18</b> |
|
22 |
-
|
23 |
-
| Models | <a href="https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B">DeepSeek-R1-Distill-Qwen-7B</a> | <a href="https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1">DeepSeek-R1-ReDistill-Qwen-7B-v1.1</a> |
|
24 |
-
|:-------------------:|:--------:|:----------------:|
|
25 |
-
| GPQA (0-shot) | 30.9 | <b>34.99</b> |
|
26 |
-
| MMLU PRO (5-shot) | 28.83 | <b>31.02</b> |
|
27 |
-
| MUSR (0-shot) | 38.85 | <b>44.42</b> |
|
28 |
-
| BBH (3-shot) | 43.54 | <b>51.53</b> |
|
29 |
-
| IfEval (0-shot) - strict | <b>42.33</b> | 35.49 |
|
30 |
-
| IfEval (0-shot) - loose | 30.31 | <b>38.49</b> |
|
31 |
-
|
32 |
-
## Usage
|
33 |
-
```Python
|
34 |
-
import torch
|
35 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
-
compute_dtype = torch.bfloat16
|
37 |
-
device = 'cuda'
|
38 |
-
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1"
|
39 |
-
|
40 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa", device_map=device)
|
41 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
-
|
43 |
-
prompt = "What is 1.5+102.2?"
|
44 |
-
chat = tokenizer.apply_chat_template([{"role":"user", "content":prompt}], tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
45 |
-
outputs = model.generate(chat.to(device), max_new_tokens=1024, do_sample=True)
|
46 |
-
print(tokenizer.decode(outputs[0]))
|
47 |
-
```
|
48 |
-
|
49 |
-
Output:
|
50 |
-
```
|
51 |
-
<|begin▁of▁sentence|><|User|>What is 1.5+102.2?<|Assistant|><think>
|
52 |
-
First, I need to add the whole number parts of the two numbers. The whole numbers are 1 and 102, which add up to 103.
|
53 |
-
|
54 |
-
Next, I add the decimal parts of the two numbers. The decimal parts are 0.5 and 0.2, which add up to 0.7.
|
55 |
-
|
56 |
-
Finally, I combine the whole number and decimal parts to get the total sum. Adding 103 and 0.7 gives me 103.7.
|
57 |
-
</think>
|
58 |
-
|
59 |
-
To add the numbers \(1.5\) and \(102.2\), follow these steps:
|
60 |
-
|
61 |
-
1. **Add the whole number parts:**
|
62 |
-
\[
|
63 |
-
1 + 102 = 103
|
64 |
-
\]
|
65 |
-
|
66 |
-
2. **Add the decimal parts:**
|
67 |
-
\[
|
68 |
-
0.5 + 0.2 = 0.7
|
69 |
-
\]
|
70 |
-
|
71 |
-
3. **Combine the results:**
|
72 |
-
\[
|
73 |
-
103 + 0.7 = 103.7
|
74 |
-
\]
|
75 |
-
|
76 |
-
**Final Answer:**
|
77 |
-
\[
|
78 |
-
\boxed{103.7}
|
79 |
-
\]<|end▁of▁sentence|>
|
80 |
-
```
|
81 |
-
|
82 |
-
## HQQ
|
83 |
-
Run ~3.5x faster with <a href="https://github.com/mobiusml/hqq/">HQQ</a>. First, install the dependencies:
|
84 |
-
```
|
85 |
-
pip install hqq
|
86 |
-
```
|
87 |
-
|
88 |
-
```Python
|
89 |
-
import torch
|
90 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
91 |
-
from hqq.models.hf.base import AutoHQQHFModel
|
92 |
-
from hqq.core.quantize import *
|
93 |
-
|
94 |
-
#Params
|
95 |
-
device = 'cuda:0'
|
96 |
-
backend = "torchao_int4"
|
97 |
-
compute_dtype = torch.bfloat16 if backend=="torchao_int4" else torch.float16
|
98 |
-
model_id = "mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1"
|
99 |
-
|
100 |
-
#Load
|
101 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
102 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype, attn_implementation="sdpa")
|
103 |
-
|
104 |
-
#Quantize
|
105 |
-
quant_config = BaseQuantizeConfig(nbits=4, group_size=64, axis=1)
|
106 |
-
AutoHQQHFModel.quantize_model(model, quant_config=quant_config, compute_dtype=compute_dtype, device=device)
|
107 |
-
|
108 |
-
#Optimize
|
109 |
-
from hqq.utils.patching import prepare_for_inference
|
110 |
-
prepare_for_inference(model, backend=backend, verbose=False)
|
111 |
|
112 |
-
|
113 |
-
#Generate (streaming)
|
114 |
-
from hqq.utils.generation_hf import HFGenerator
|
115 |
-
gen = HFGenerator(model, tokenizer, max_new_tokens=4096, do_sample=True, compile='partial').warmup()
|
116 |
|
117 |
-
|
118 |
-
out = gen.generate(prompt, print_tokens=True)
|
119 |
|
120 |
-
|
121 |
-
# #Generate (simple)
|
122 |
-
# from hqq.utils.generation_hf import patch_model_for_compiled_runtime
|
123 |
-
# patch_model_for_compiled_runtime(model, tokenizer, warmup=True)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
+
- mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1
|
4 |
+
library_name: transformers
|
5 |
+
tags:
|
6 |
+
- DeepSeek-R1-Distill-Qwen-7B
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
pipeline_tag: text-generation
|
10 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Melvin56/DeepSeek-R1-ReDistill-Qwen-7B-v1.1-GGUF
|
|
|
|
|
|
|
13 |
|
14 |
+
Original Model : [mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1](https://huggingface.co/mobiuslabsgmbh/DeepSeek-R1-ReDistill-Qwen-7B-v1.1)
|
|
|
15 |
|
16 |
+
All quants are made using the imatrix option
|
|
|
|
|
|
|
17 |
|
18 |
+
| Model | Size (GB) | Params |
|
19 |
+
|:-------------------------------------------------|:-------------:|:-------:|
|
20 |
+
| Q2_K_S | 2.82 GB | 7.62B |
|
21 |
+
| Q2_K | 3.01 GB | 7.62B |
|
22 |
+
| Q3_K_M | 3.80 GB | 7.62B |
|
23 |
+
| Q3_K_M | 3.80 GB | 7.62B |
|
24 |
+
| Q4_0 | 4.43 GB | 7.62B |
|
25 |
+
| Q4_K_M | 4.68 GB | 7.62B |
|
26 |
+
| Q5_K_M | 5.45 GB | 7.62B |
|
27 |
+
| Q6_K | 6.25 GB | 7.62B |
|
28 |
+
| Q8_0 | 8.10 GB | 7.62B |
|
29 |
+
| F16 | 15.23 GB | 7.62B |
|