--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer model-index: - name: experiment_lr_20241214_130720 results: [] --- # experiment_lr_20241214_130720 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0103 - Exact Match Accuracy: 0.8830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.014 | 1.0 | 4594 | 0.0125 | 0.6134 | | 0.0023 | 2.0 | 9188 | 0.0072 | 0.8473 | | 0.0009 | 3.0 | 13782 | 0.0078 | 0.8711 | | 0.0006 | 4.0 | 18376 | 0.0085 | 0.8711 | | 0.0003 | 5.0 | 22970 | 0.0094 | 0.8685 | | 0.0002 | 6.0 | 27564 | 0.0096 | 0.8771 | | 0.0002 | 7.0 | 32158 | 0.0095 | 0.8824 | | 0.0001 | 8.0 | 36752 | 0.0111 | 0.8744 | | 0.0001 | 9.0 | 41346 | 0.0103 | 0.8830 | | 0.0001 | 10.0 | 45940 | 0.0100 | 0.8824 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0