--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: experiment_lr_20241215_145438-postcrash results: [] --- # experiment_lr_20241215_145438-postcrash This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0166 - Exact Match Accuracy: 0.5777 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.0725 | 1.0 | 2297 | 0.0720 | 0.0 | | 0.0661 | 2.0 | 4594 | 0.0607 | 0.0 | | 0.0422 | 3.0 | 6891 | 0.0356 | 0.0245 | | 0.0252 | 4.0 | 9188 | 0.0234 | 0.1441 | | 0.0193 | 5.0 | 11485 | 0.0185 | 0.4620 | | 0.0164 | 6.0 | 13782 | 0.0168 | 0.5711 | | 0.0158 | 7.0 | 16079 | 0.0166 | 0.5777 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0