|
import math |
|
from typing import ClassVar, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from PIL import Image |
|
from transformers import BatchFeature |
|
from transformers.models.qwen2_vl import Qwen2VLProcessor |
|
|
|
from colpali_engine.utils.processing_utils import BaseVisualRetrieverProcessor |
|
|
|
|
|
def round_by_factor(number: float, factor: int) -> int: |
|
"""Returns the closest integer to 'number' that is divisible by 'factor'.""" |
|
return round(number / factor) * factor |
|
|
|
|
|
def ceil_by_factor(number: float, factor: int) -> int: |
|
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" |
|
return math.ceil(number / factor) * factor |
|
|
|
|
|
def floor_by_factor(number: float, factor: int) -> int: |
|
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" |
|
return math.floor(number / factor) * factor |
|
|
|
|
|
class ColQwenStellaProcessor(BaseVisualRetrieverProcessor, Qwen2VLProcessor): |
|
""" |
|
Processor for ColQwen2. |
|
""" |
|
|
|
visual_prompt_prefix: ClassVar[str] = ( |
|
"<|im_start|><|image_pad|><|im_end|><|endoftext|>" |
|
) |
|
query_prefix: ClassVar[str] = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: " |
|
query_augmentation_token: ClassVar[str] = "<|endoftext|>" |
|
image_token: ClassVar[str] = "<|image_pad|>" |
|
|
|
@property |
|
def image_token_id(self) -> int: |
|
return self.tokenizer.convert_tokens_to_ids(self.image_token) |
|
|
|
def __init__(self, *args, **kwargs): |
|
num_image_tokens = kwargs.pop("num_image_tokens", 768) |
|
super().__init__(*args, **kwargs) |
|
self.tokenizer.padding_side = "left" |
|
self.min_pixels = 4 * 28 * 28 |
|
self.max_pixels = num_image_tokens * 28 * 28 |
|
self.factor = 28 |
|
self.max_ratio = 200 |
|
|
|
@staticmethod |
|
def smart_resize_helper( |
|
width: int, |
|
height: int, |
|
factor: int, |
|
max_ratio: int, |
|
min_pixels: int, |
|
max_pixels: int, |
|
) -> Tuple[int, int]: |
|
""" |
|
Returns the image size so that the following conditions are met: |
|
1. Both dimensions (height and width) are divisible by 'factor'. |
|
2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. |
|
3. The aspect ratio of the image is maintained as closely as possible. |
|
""" |
|
|
|
if max(height, width) / min(height, width) > max_ratio: |
|
raise ValueError( |
|
f"absolute aspect ratio must be smaller than {max_ratio}, " |
|
f"got {max(height, width) / min(height, width)}" |
|
) |
|
|
|
h_bar = max(factor, round_by_factor(height, factor)) |
|
w_bar = max(factor, round_by_factor(width, factor)) |
|
|
|
if h_bar * w_bar > max_pixels: |
|
beta = math.sqrt((height * width) / max_pixels) |
|
h_bar = floor_by_factor(height / beta, factor) |
|
w_bar = floor_by_factor(width / beta, factor) |
|
elif h_bar * w_bar < min_pixels: |
|
beta = math.sqrt(min_pixels / (height * width)) |
|
h_bar = ceil_by_factor(height * beta, factor) |
|
w_bar = ceil_by_factor(width * beta, factor) |
|
|
|
return h_bar, w_bar |
|
|
|
def smart_resize(self, image: Image.Image) -> Image.Image: |
|
""" |
|
Resize and convert the image to the required format. |
|
""" |
|
image_size = image.size |
|
resized_height, resized_width = self.smart_resize_helper( |
|
width=image_size[0], |
|
height=image_size[1], |
|
factor=self.factor, |
|
max_ratio=self.max_ratio, |
|
min_pixels=self.min_pixels, |
|
max_pixels=self.max_pixels, |
|
) |
|
return image.convert("RGB").resize((resized_width, resized_height)) |
|
|
|
def process_images( |
|
self, |
|
images: List[Image.Image], |
|
) -> BatchFeature: |
|
""" |
|
Process images for ColQwen2. |
|
""" |
|
texts_doc = [self.visual_prompt_prefix] * len(images) |
|
|
|
resized_images: List[Image.Image] = [self.smart_resize(image) for image in images] |
|
|
|
batch_doc = self( |
|
text=texts_doc, |
|
images=resized_images, |
|
padding="longest", |
|
return_tensors="pt", |
|
) |
|
for i in range(batch_doc["input_ids"].shape[0]): |
|
batch_doc["input_ids"][i][batch_doc["input_ids"][i]==151655] = 151646 |
|
|
|
|
|
|
|
offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2] |
|
|
|
|
|
pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist()) |
|
|
|
|
|
max_length = max([len(pv) for pv in pixel_values]) |
|
|
|
pixel_values = [ |
|
torch.cat([pv, torch.zeros((max_length - len(pv), pv.shape[1]), dtype=pv.dtype, device=pv.device)]) |
|
for pv in pixel_values |
|
] |
|
batch_doc["pixel_values"] = torch.stack(pixel_values) |
|
|
|
return batch_doc |
|
|
|
def process_queries( |
|
self, |
|
queries: List[str], |
|
max_length: int = 50, |
|
suffix: Optional[str] = None, |
|
) -> BatchFeature: |
|
""" |
|
Process queries for ColQwen2. |
|
""" |
|
if suffix is None: |
|
suffix = self.query_augmentation_token * 10 |
|
texts_query: List[str] = [] |
|
|
|
for query in queries: |
|
query = self.query_prefix + query + suffix |
|
texts_query.append(query) |
|
|
|
batch_query = self( |
|
text=texts_query, |
|
return_tensors="pt", |
|
padding="longest", |
|
) |
|
|
|
return batch_query |
|
|
|
def score( |
|
self, |
|
qs: List[torch.Tensor], |
|
ps: List[torch.Tensor], |
|
device: Optional[Union[str, torch.device]] = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. |
|
""" |
|
return self.score_multi_vector(qs, ps, device=device, **kwargs) |
|
|
|
def get_n_patches( |
|
self, |
|
image_size: Tuple[int, int], |
|
patch_size: int, |
|
spatial_merge_size: int, |
|
) -> Tuple[int, int]: |
|
""" |
|
Get the number of patches (n_patches_x, n_patches_y) that will be used to process an image of |
|
size (height, width) with the given patch size. |
|
|
|
The `spatial_merge_size` is the number of patches that will be merged spatially. It is stored in |
|
as a `Qwen2VLForConditionalGeneration` attribute under `model.spatial_merge_size`. |
|
""" |
|
height_new, width_new = self.smart_resize_helper( |
|
width=image_size[0], |
|
height=image_size[1], |
|
factor=self.factor, |
|
max_ratio=self.max_ratio, |
|
min_pixels=self.min_pixels, |
|
max_pixels=self.max_pixels, |
|
) |
|
|
|
n_patches_x = width_new // patch_size // spatial_merge_size |
|
n_patches_y = height_new // patch_size // spatial_merge_size |
|
|
|
return n_patches_x, n_patches_y |
|
|
|
def get_image_mask(self, batch_images: BatchFeature) -> torch.Tensor: |
|
return batch_images.input_ids == self.image_token_id |
|
|