ColQwenStella-2b-multilingual / processing_colqwenstella.py
Markgazol's picture
Upload folder using huggingface_hub
a55cbd2 verified
import math
from typing import ClassVar, List, Optional, Tuple, Union
import torch
from PIL import Image
from transformers import BatchFeature
from transformers.models.qwen2_vl import Qwen2VLProcessor
from colpali_engine.utils.processing_utils import BaseVisualRetrieverProcessor
def round_by_factor(number: float, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: float, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: float, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
class ColQwenStellaProcessor(BaseVisualRetrieverProcessor, Qwen2VLProcessor):
"""
Processor for ColQwen2.
"""
visual_prompt_prefix: ClassVar[str] = (
"<|im_start|><|image_pad|><|im_end|><|endoftext|>"
)
query_prefix: ClassVar[str] = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "
query_augmentation_token: ClassVar[str] = "<|endoftext|>"
image_token: ClassVar[str] = "<|image_pad|>"
@property
def image_token_id(self) -> int:
return self.tokenizer.convert_tokens_to_ids(self.image_token)
def __init__(self, *args, **kwargs):
num_image_tokens = kwargs.pop("num_image_tokens", 768)
super().__init__(*args, **kwargs)
self.tokenizer.padding_side = "left"
self.min_pixels = 4 * 28 * 28
self.max_pixels = num_image_tokens * 28 * 28
self.factor = 28
self.max_ratio = 200
@staticmethod
def smart_resize_helper(
width: int,
height: int,
factor: int,
max_ratio: int,
min_pixels: int,
max_pixels: int,
) -> Tuple[int, int]:
"""
Returns the image size so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if max(height, width) / min(height, width) > max_ratio:
raise ValueError(
f"absolute aspect ratio must be smaller than {max_ratio}, "
f"got {max(height, width) / min(height, width)}"
)
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
return h_bar, w_bar
def smart_resize(self, image: Image.Image) -> Image.Image:
"""
Resize and convert the image to the required format.
"""
image_size = image.size
resized_height, resized_width = self.smart_resize_helper(
width=image_size[0],
height=image_size[1],
factor=self.factor,
max_ratio=self.max_ratio,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
return image.convert("RGB").resize((resized_width, resized_height))
def process_images(
self,
images: List[Image.Image],
) -> BatchFeature:
"""
Process images for ColQwen2.
"""
texts_doc = [self.visual_prompt_prefix] * len(images)
resized_images: List[Image.Image] = [self.smart_resize(image) for image in images]
# # batch_doc["input_ids"][0][batch_doc["input_ids"][0]==151655] = 151646
batch_doc = self(
text=texts_doc,
images=resized_images,
padding="longest",
return_tensors="pt",
)
for i in range(batch_doc["input_ids"].shape[0]):
batch_doc["input_ids"][i][batch_doc["input_ids"][i]==151655] = 151646
# NOTE: The following code is a hack to make sure the scatter in DDP is done correctly when training
# on multiple GPUs.
offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
# separate pixel_values for each image
pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())
# pad pixel_values to the same length to be able to make it into a tensor
max_length = max([len(pv) for pv in pixel_values])
pixel_values = [
torch.cat([pv, torch.zeros((max_length - len(pv), pv.shape[1]), dtype=pv.dtype, device=pv.device)])
for pv in pixel_values
]
batch_doc["pixel_values"] = torch.stack(pixel_values)
return batch_doc
def process_queries(
self,
queries: List[str],
max_length: int = 50,
suffix: Optional[str] = None,
) -> BatchFeature:
"""
Process queries for ColQwen2.
"""
if suffix is None:
suffix = self.query_augmentation_token * 10
texts_query: List[str] = []
for query in queries:
query = self.query_prefix + query + suffix
texts_query.append(query)
batch_query = self(
text=texts_query,
return_tensors="pt",
padding="longest",
)
return batch_query
def score(
self,
qs: List[torch.Tensor],
ps: List[torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
**kwargs,
) -> torch.Tensor:
"""
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
"""
return self.score_multi_vector(qs, ps, device=device, **kwargs)
def get_n_patches(
self,
image_size: Tuple[int, int],
patch_size: int,
spatial_merge_size: int,
) -> Tuple[int, int]:
"""
Get the number of patches (n_patches_x, n_patches_y) that will be used to process an image of
size (height, width) with the given patch size.
The `spatial_merge_size` is the number of patches that will be merged spatially. It is stored in
as a `Qwen2VLForConditionalGeneration` attribute under `model.spatial_merge_size`.
"""
height_new, width_new = self.smart_resize_helper(
width=image_size[0],
height=image_size[1],
factor=self.factor,
max_ratio=self.max_ratio,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
n_patches_x = width_new // patch_size // spatial_merge_size
n_patches_y = height_new // patch_size // spatial_merge_size
return n_patches_x, n_patches_y
def get_image_mask(self, batch_images: BatchFeature) -> torch.Tensor:
return batch_images.input_ids == self.image_token_id