--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuning-sentiment-model-300-samples results: [] --- # finetuning-sentiment-model-300-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6372 - Accuracy: 0.8333 - F1: 0.8148 - Precision: 1.0 - Recall: 0.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3