SAC_Pick_and_Place / config.json
Michael-Andrev's picture
Initial commit
390fdda
raw
history blame
18.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7c0069b48790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c0069b45780>"}, "verbose": 1, "policy_kwargs": {"use_sde": false}, "num_timesteps": 501540, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700534109977448701, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAb06OPvZx/r6+d7A9E4ZtP8oNVr7Gd7A9QmQ/v1FeNT++hrA9v0i5P7pWQD8berA9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/ywkP/olgj/+kBw/l5isP2sIAD6FSQi/TAnnvpUWnT+W68++JjiBP58DGT+SSt6+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAABql0o/t7xcvXEmTL/Wvgk/Ll3YP1f6VzwS86Q/b06OPvZx/r6+d7A9RGL0uvnLHLwjFLU6f5crPdNjgbxGwCQ9F3uBOyPlK7wVwOE75hIwP0zS9r6SASQ/0xZlP+q8NT+9A0I/dJ5svxOGbT/KDVa+xnewPS1s9Lr5yxy8JW3HOnyXKz1uZYG8hr8kPYqhgTsi5Su8b8DhO6s4Lz8AdY28GE6OPxfC2z1Cp/w9cO6GP+GdbL9CZD+/UV41P76GsD05MBG7FkgcvBJF3DovhCw9m3SBvEbAJD0Ue4E7IuUrvKSI6DvDFZk+fDeYvgt/wT7xLE4/teVgv7x0Wz9cHDC/v0i5P7pWQD8berA9OuL6um5VHLy3Gcw6yTMqPS52g7z4CyU9j5OzO18hTbyItuE7lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.27794215 -0.4969632 0.08616589]\n [ 0.92782706 -0.20903698 0.08616595]\n [-0.74762356 0.7084704 0.0861945 ]\n [ 1.4475325 0.75132334 0.0861704 ]]", "desired_goal": "[[ 0.6413116 1.016784 0.6115874 ]\n [ 1.3484067 0.12503211 -0.5323718 ]\n [-0.4512428 1.2272516 -0.40609425]\n [ 1.009526 0.5977115 -0.43416268]]", "observation": "[[ 7.91372895e-01 -5.38909100e-02 -7.97461569e-01 5.38068175e-01\n 1.69034362e+00 1.31822443e-02 1.28866792e+00 2.77942151e-01\n -4.96963203e-01 8.61658901e-02 -1.86450081e-03 -9.57011525e-03\n 1.38152053e-03 4.18925248e-02 -1.57946702e-02 4.02224287e-02\n 3.95144103e-03 -1.04916422e-02 6.88935304e-03]\n [ 6.87788367e-01 -4.82073188e-01 6.40648961e-01 8.94879520e-01\n 7.09913850e-01 7.57869542e-01 -9.24292803e-01 9.27827060e-01\n -2.09036976e-01 8.61659497e-02 -1.86479616e-03 -9.57011525e-03\n 1.52150227e-03 4.18925136e-02 -1.57954358e-02 4.02217135e-02\n 3.95602454e-03 -1.04916412e-02 6.88939495e-03]\n [ 6.84458435e-01 -1.72677040e-02 1.11175823e+00 1.07303791e-01\n 1.23365894e-01 1.05415154e+00 -9.24284041e-01 -7.47623563e-01\n 7.08470404e-01 8.61945003e-02 -2.21539871e-03 -9.53867100e-03\n 1.68052525e-03 4.21182476e-02 -1.58026721e-02 4.02224287e-02\n 3.95143963e-03 -1.04916412e-02 7.09636696e-03]\n [ 2.98994154e-01 -2.97298312e-01 3.77922386e-01 8.05373251e-01\n -8.78505051e-01 8.57249975e-01 -6.87932730e-01 1.44753253e+00\n 7.51323342e-01 8.61703977e-02 -1.91409071e-03 -9.54185240e-03\n 1.55716285e-03 4.15532924e-02 -1.60475634e-02 4.02946174e-02\n 5.48023684e-03 -1.25201633e-02 6.88821450e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACOzMPNfOVr3Qv6M8jRS/PX+Ts7zRv6M8b3apve5Mmj3MwaM8UXUXPqOaoz0gwKM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANeNhPdqssz36CAg+hobvPSKKKDyTWmo9e0glvfIb2T1nRoY9OdyyPfhGUj16eYI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAA0xSU+JjPlPLuluDsLfbU9DUkzP9O/HTphzqM9COzMPNfOVr3Qv6M8O9iMOFY6GzcqzaS4ibGpt/TrF7bkT2WtXdg9MLxKWy5qiPu44bQKPrbsq72uvpE+GfpDPm0wnT7cyJc+C9AWM40Uvz1/k7O80b+jPOu3jDgoOhs34YG4t0Wzqbcodhu2Luhgs92lLzZaFFkwuGz7uCjWCT7Yzxk9TIvAPk0yEb2F2JI9HA3UPlmhvTRvdqm97kyaPczBozyPJZG2i4VXN6FhMTi8YY229+s8tkS3Oq2WH1uuUaIpMCUhDjl0gBQ9ZAMSvb5Kbz5LlCk+/BKpvuL/qz5H9ws8UXUXPqOaoz0gwKM86FBvOKZrUTfUTv62Us05uEArpbf8wbE2j8lkOvjMnbr8ev64lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.02501489 -0.05244335 0.01998892]\n [ 0.09330092 -0.02192092 0.01998893]\n [-0.08274543 0.07534204 0.01998987]\n [ 0.14790846 0.07988479 0.01998907]]", "desired_goal": "[[ 0.05514832 0.08773203 0.13284674]\n [ 0.1169558 0.01028684 0.05721528]\n [-0.04035233 0.10601033 0.06556397]\n [ 0.0873341 0.05133721 0.06370826]]", "observation": "[[ 1.61885083e-01 2.79784910e-02 5.63499099e-03 8.86174068e-02\n 7.00333416e-01 6.01765874e-04 7.99834803e-02 2.50148922e-02\n -5.24433516e-02 1.99889243e-02 6.71599628e-05 9.25230233e-06\n -7.85834418e-05 -2.02290412e-05 -2.26380962e-06 -1.30348822e-11\n 6.90652702e-10 4.98612124e-11 -1.19940218e-04]\n [ 1.35455623e-01 -8.39475840e-02 2.84657896e-01 1.91383734e-01\n 3.07010084e-01 2.96454310e-01 3.51138105e-08 9.33009163e-02\n -2.19209176e-02 1.99889261e-02 6.70997761e-05 9.25226050e-06\n -2.19949889e-05 -2.02298488e-05 -2.31655758e-06 -5.23652304e-08\n 2.61735772e-06 7.89730614e-10 -1.19888631e-04]\n [ 1.34606004e-01 3.75517309e-02 3.76062751e-01 -3.54483612e-02\n 7.17020407e-02 4.14162517e-01 3.53213892e-07 -8.27454254e-02\n 7.53420442e-02 1.99898705e-02 -4.32570914e-06 1.28460915e-05\n 4.22910125e-05 -4.21350524e-06 -2.81515327e-06 -1.06135691e-11\n -4.98228889e-11 6.17125073e-10 1.35545226e-04]\n [ 3.62553149e-02 -3.56477648e-02 2.33683556e-01 1.65604755e-01\n -3.30222964e-01 3.35936606e-01 8.54284223e-03 1.47908464e-01\n 7.98847899e-02 1.99890733e-02 5.70573902e-05 1.24824346e-05\n -7.57896669e-06 -4.42986566e-05 -1.96896726e-05 5.29759382e-06\n 8.72754434e-04 -1.20392349e-03 -1.21345714e-04]]"}, "_episode_num": 10368, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.49846, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CoS9DkuHvddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTff95yEMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTgSz5XU6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTl3MINVjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoTgBtk4FSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUCCe2/i6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUD0x/NJOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUJioCMgmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUD95prULdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUk/su3+ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUl2JSBK+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUrgavRqodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoUlqRdQfqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVHSEUTL4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVIJcgQpXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVN3DvVmSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVIeJpFkQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVsHSF49pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVuFYU34sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVz2FN+LFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoVuNCqp97dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWPrzf779dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWR0s4DLbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWXgKnei0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoWR5mI0qIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW0FruYx+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW11jI7vHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW7hWYF7ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoW1xDst03dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXYtr0rbydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXamh/RVqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXgZ5iVjadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoXbL9MsYmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoX/fo7muDdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoYAR2KVIJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYB3Dm8ujdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYH0h3aBadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYCPwVj7RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYl1rAP/adX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYmR7Z39rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYsBfKISEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoYmL5AQg+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZIwtJ4B4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZI8f3evZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZOpSaVlgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZI4o7V8UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZr5uqFRHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZs0QCjk/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZyrdN34cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoZtKSX+l1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaPfx2B8QdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaQSkTHsDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaWEq2BrfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoaQjqfOD8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coa1HaN+9bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coa2/DLr5ZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coa8yHuZ1FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coa3BAfMfSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobaG8dxQ0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cobaiv5gw5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobgScLBsRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CobanhjvuxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cob82BjFyadX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cob9jI7vG7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cob9skyDZldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CocDXQD3dsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cob9p9RaX8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cocj1jAi3YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CockoKMNtqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CocqYNZvDQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CockyLIgeSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CodHQXyiEhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CodG9v863idX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CodMtvfj0ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CodHE9t/FzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CodtZCv5gxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoduaOYIBzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cod0PrfLs9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CodusewLVndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoeUMwlByCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoeUzVMEiddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoeajWsijddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CoebT8gpz+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoeVFgMMJAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coe32Yv38GdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coe3mjsUqQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coe+CjDbaidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coe3j+R5kcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofbPoV2zOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofawcHWz4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofhCJGe+VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CofafL1VYIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof+QXqJMydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof+6HTI/8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CogFSSeRPodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cof+3/HYHxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Coghi4J/oadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoghV27nPndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cognm7z06HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CoghGUfPondWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 125359, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwQRGljdFJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray], 'next_observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Replay buffer used in off-policy algorithms like SAC/TD3.\n Extends the ReplayBuffer to use dictionary observations\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function DictReplayBuffer.__init__ at 0x7c0069a74670>", "add": "<function DictReplayBuffer.add at 0x7c0069a74700>", "sample": "<function DictReplayBuffer.sample at 0x7c0069a74790>", "_get_samples": "<function DictReplayBuffer._get_samples at 0x7c0069a74820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c0069a6da40>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoO4oQ315LE+8LKHM9/l9qogZ4NIwDaW5jlIoQmUVdpDt+oH7TctG69dJKSXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}